Issue 10, 2021

Soluble, crystalline, and thermally stable alkali CO2 and carbonite (CO22−) clusters supported by cyclic(alkyl)(amino) carbenes

Abstract

The mono- and dianions of CO2 (i.e., CO2 and CO22−) have been studied for decades as both fundamentally important oxycarbanions (anions containing only C and O atoms) and as critical species in CO2 reduction and fixation chemistry. However, CO2 anions are highly unstable and difficult to study. As such, examples of stable compounds containing these ions are extremely limited; the unadulterated alkali salts of CO2 (i.e., MCO2, M2CO2, M = alkali metal) decompose rapidly above 15 K, for example. Herein we report the chemical reduction of a cyclic (alkyl)(amino) carbene (CAAC) adduct of CO2 at room temperature by alkali metals, which results in the formation of CAAC-stabilized alkali CO2 and CO22− clusters. One-electron reduction of CAAC–CO2 adduct (1) with lithium, sodium or potassium metal yields stable monoanionic radicals [M(CAAC–CO2)]n (M = Li, Na, K, 2–4) analogous to the alkali CO2 radical, and two-electron alkali metal reduction affords dianionic clusters of the general formula [M2(CAAC–CO2)]n (5–8) with reduced CO2 units which are structurally analogous to the carbonite anion CO22−. It is notable that crystalline clusters of these alkali–CO2 salts may also be isolated via the “one-pot” reaction of free CO2 with free CAAC followed by the addition of alkali metals – a process which does not occur in the absence of carbene. Each of the products 2–8 was investigated using a combination of experimental and theoretical methods.

Graphical abstract: Soluble, crystalline, and thermally stable alkali CO2− and carbonite (CO22−) clusters supported by cyclic(alkyl)(amino) carbenes

Supplementary files

Article information

Article type
Edge Article
Submitted
15 Dec. 2020
Accepted
22 Janv. 2021
First published
22 Janv. 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2021,12, 3544-3550

Soluble, crystalline, and thermally stable alkali CO2 and carbonite (CO22−) clusters supported by cyclic(alkyl)(amino) carbenes

L. A. Freeman, A. D. Obi, H. R. Machost, A. Molino, A. W. Nichols, D. A. Dickie, D. J. D. Wilson, C. W. Machan and R. J. Gilliard, Chem. Sci., 2021, 12, 3544 DOI: 10.1039/D0SC06851A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements