Issue 45, 2021

Fullerene derivatives with oligoethylene–glycol side chains: an investigation on the origin of their outstanding transport properties

Abstract

For many years, fullerene derivatives have been the main n-type material of organic electronics and optoelectronics. Recently, fullerene derivatives functionalized with ethylene glycol (EG) side chains have been showing important properties such as enhanced dielectric constants, facile doping and enhanced self-assembly capabilities. Here, we have prepared field-effect transistors using a series of these fullerene derivatives equipped with EG side chains of different lengths. Transport data show the beneficial effect of increasing the EG side chain. In order to understand the material properties, full structural determination of these fullerene derivatives has been achieved by coupling the X-ray data with molecular dynamics (MD) simulations. The increase in transport properties is paired with the formation of extended layered structures, efficient molecular packing and an increase in the crystallite alignment. The layer-like structure is composed of conducting layers, containing of closely packed C60 balls approaching the inter-distance of 1 nm, that are separated by well-defined EG layers, where the EG chains are rather splayed with the chain direction almost perpendicular to the layer normal. Such a layered structure appears highly ordered and highly aligned with the C60 planes oriented parallel to the substrate in the thin film configuration. The order inside the thin film increases with the EG chain length, allowing the systems to achieve mobilities as high as 0.053 cm2 V−1 s−1. Our work elucidates the structure of these interesting semiconducting organic molecules and shows that the synergistic use of X-ray structural analysis and MD simulations is a powerful tool to identify the structure of thin organic films for optoelectronic applications.

Graphical abstract: Fullerene derivatives with oligoethylene–glycol side chains: an investigation on the origin of their outstanding transport properties

Supplementary files

Article information

Article type
Paper
Submitted
15 Jūn. 2021
Accepted
27 Jūl. 2021
First published
18 Aug. 2021
This article is Open Access
Creative Commons BY license

J. Mater. Chem. C, 2021,9, 16217-16225

Fullerene derivatives with oligoethylene–glycol side chains: an investigation on the origin of their outstanding transport properties

J. Dong, S. Sami, D. M. Balazs, R. Alessandri, F. Jahani, L. Qiu, S. J. Marrink, R. W. A. Havenith, J. C. Hummelen, M. A. Loi and G. Portale, J. Mater. Chem. C, 2021, 9, 16217 DOI: 10.1039/D1TC02753K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements