Issue 15, 2022

Two-stage nicking enzyme signal amplification (NESA)-based biosensing platform for the ultrasensitive electrochemical detection of pathogenic bacteria

Abstract

The sensitive and selective detection of pathogenic bacteria represents an essential approach in food safety analysis and clinical diagnostics. We report the development of a simple, rapid, and low-cost electrochemical biosensing strategy for the detection of pathogenic bacteria with ultrasensitivity and high specificity. The biosensor relies on the target and aptamer binding-triggered two-stage nicking enzyme signal amplification (NESA) and three-way junction probe-mediated electrochemical signal transduction. In the presence of the target S. typhimurium, the specific binding of S. typhimurium and aptamer results in the release of a primer, which hybridizes with HAP1 and initiates an extension reaction with the aid of polymerase and dNTPs. A specific recognition site for Nt.BsmaI is generated in the DNA duplex; thus, the produced DNA is nicked and the secondary primer is released (named recycle I). Subsequently, the reaction solution supplemented with a helper DNA is dropped on the electrode surface, and a three-way junction probe containing a specific recognition site for Nt.BsmaI is thus formed. The MB-labeled probe is nicked with the help of Nt.BsmaI and the dissociated primer-helper DNA duplex combines with another HAP2 (named recycle II). Thus, a remarkably decreased electrochemical signal is generated because the electroactive MB is far away from the electrode surface. As far as we know, this work is the first time that NESA and three-way junction probe-mediated electrochemical signal transduction has been used for pathogenic bacteria detection. Under optimal conditions, the results reveal that the calibration plot obtained for S. typhimurium is approximately linear from 9.6 to 9.6 × 105 cfu mL−1 with the limit of detection of 8 cfu mL−1. Additionally, the proposed strategy has been successfully applied to the quantitative assay of S. typhimurium in the real samples. Therefore, the NESA-based biosensing strategy might create a useful and practical platform for pathogenic bacteria identification, and the related food safety analysis and clinical diagnosis.

Graphical abstract: Two-stage nicking enzyme signal amplification (NESA)-based biosensing platform for the ultrasensitive electrochemical detection of pathogenic bacteria

Article information

Article type
Paper
Submitted
11 Dec. 2021
Accepted
16 Marts 2022
First published
17 Marts 2022

Anal. Methods, 2022,14, 1490-1497

Two-stage nicking enzyme signal amplification (NESA)-based biosensing platform for the ultrasensitive electrochemical detection of pathogenic bacteria

Z. Zhu, Q. Pei, J. Li, Q. Zhang, W. Xu, Y. Wang, S. Liu and J. Huang, Anal. Methods, 2022, 14, 1490 DOI: 10.1039/D1AY02103F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements