Issue 26, 2022

Grazing incidence fast atom and molecule diffraction: theoretical challenges

Abstract

This perspective article reviews the state-of-the-art of grazing incidence fast atom and molecule diffraction (GIFAD and GIFMD) simulations and addresses the main challenges that theorists, aiming to provide useful inputs in this topic, are facing. We first discuss briefly the methods used to build accurate potential energy surfaces describing the interaction between the projectile and the surface. Subsequently, we focus on the dynamics simulation methods for GIFAD, a phenomenon that has received a lot of experimental attention since 2007, when the first measurements were published. Following this experimental effort, theorists have developed and adapted a bunch of methods able to simulate, analyze and extract information from the experimental outputs. We review these methods, from the very simple ones based on classical dynamics to the full quantum ones, paying special attention to more versatile semiclassical approaches, which include quantum ingredients in the dynamics at a computational cost only slightly higher than that required in classical dynamics. Within the semiclassical framework it is possible, for example, to include in the dynamics the surface phonons and the projectile coherence, two factors that may have a relevant influence on the experimental measurements, at a reasonable computational cost. Finally, we address GIFMD, a phenomenon that has received much less attention and for which there is still a lot of room for research. We review the few examples of GIFMD available in the literature, and we discuss new phenomena associated with the molecular internal degrees of freedom, which may have some impact in other closely related fields, such as molecular reactivity on metal surfaces. Finally, we point out opened questions, raised from the comparisons between theoretical and experimental results, which claim for further experimental efforts.

Graphical abstract: Grazing incidence fast atom and molecule diffraction: theoretical challenges

Article information

Article type
Perspective
Submitted
15 Marts 2022
Accepted
01 Jūn. 2022
First published
07 Jūn. 2022

Phys. Chem. Chem. Phys., 2022,24, 15628-15656

Grazing incidence fast atom and molecule diffraction: theoretical challenges

C. Díaz and M. S. Gravielle, Phys. Chem. Chem. Phys., 2022, 24, 15628 DOI: 10.1039/D2CP01246D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements