Issue 1, 2022

Optimization of SnO2 electron transport layer for efficient planar perovskite solar cells with very low hysteresis

Abstract

Nanostructured tin oxide (SnO2) is a very promising electron transport layer (ETL) for perovskite solar cells (PSCs) that allows low-temperature processing in the planar n–i–p architecture. However, minimizing current–voltage (JV) hysteresis and optimizing charge extraction for PSCs in this architecture remains a challenge. In response to this, we study and optimize different types of single- and bilayer SnO2 ETLs. Detailed characterization of the optoelectronic properties reveals that a bilayer ETL composed of lithium (Li)-doped compact SnO2 (c(Li)-SnO2) at the bottom and potassium-capped SnO2 nanoparticle layers (NP-SnO2) at the top enhances the electron extraction and charge transport properties of PSCs and reduces the degree of ion migration. This results in an improved PCE and a strongly reduced JV hysteresis for PSCs with a bilayer c(Li)-NP-SnO2 ETL as compared to reference PSCs with a single-layer or undoped bilayer ETL. The champion PSC with c(Li)-NP-SnO2 ETL shows a high stabilized PCE of up to 18.5% compared to 15.7%, 12.5% and 16.3% for PSCs with c-SnO2, c(Li)-SnO2 and c-NP-SnO2 as ETL, respectively.

Graphical abstract: Optimization of SnO2 electron transport layer for efficient planar perovskite solar cells with very low hysteresis

Supplementary files

Article information

Article type
Paper
Submitted
06 Jūl. 2021
Accepted
13 Okt. 2021
First published
04 Nov. 2021
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2022,3, 456-466

Optimization of SnO2 electron transport layer for efficient planar perovskite solar cells with very low hysteresis

A. A. Eliwi, M. Malekshahi Byranvand, P. Fassl, M. R. Khan, I. M. Hossain, M. Frericks, S. Ternes, T. Abzieher, J. A. Schwenzer, T. Mayer, J. P. Hofmann, B. S. Richards, U. Lemmer, M. Saliba and U. W. Paetzold, Mater. Adv., 2022, 3, 456 DOI: 10.1039/D1MA00585E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements