Issue 5, 2022

Elastomeric microwell-based triboelectric nanogenerators by in situ simultaneous transfer-printing

Abstract

Self-powered tactile module-based electronic skins incorporating triboelectric nanogenerator (TENG) appears to be a worthwhile alternative for smart monitoring devices in terms of sustainable energy harvesting. On top of it, ultra-stretchability and detection sensitivity are imperative to mimic human skin. We report, for the first time, a metal-free single electrode TENG-based self-powered tactile module comprising of microwells (diameters 2 μm and 200 nm, respectively) on fluoroelastomer (FKM) and laser induced graphene (LIG) electrodes by in situ simultaneous transfer printing method. Direct imprinting of both the active surface and LIG electrode on a tribonegative FKM has not been attempted before. The resulting triboelectric module exhibits impressive maximum power density of 715 mW m−2, open circuit voltage and maximum output current of 148 V and 9.6 μA respectively for a matching load of 10 MΩ. Moreover, the TENG unit is very robust and sustained high electrical output even at 200% elongation. A dielectric-to-dielectric TENG-based tactile sensor is also constructed using FKM (negative tribolayer) and TiO2 deposited micropatterned PDMS. Resulting tribo-sensor demonstrates remarkable motion and force sensitivity. It can also distinguish subtle human contact force that can simulate skin with high sensitivity and therefore, can be utilized for potential e-skin/bionic skin applications in health and human-machine interfaces.

Graphical abstract: Elastomeric microwell-based triboelectric nanogenerators by in situ simultaneous transfer-printing

Supplementary files

Article information

Article type
Communication
Submitted
19 Janv. 2022
Accepted
28 Febr. 2022
First published
28 Febr. 2022
This article is Open Access
Creative Commons BY license

Mater. Horiz., 2022,9, 1468-1478

Elastomeric microwell-based triboelectric nanogenerators by in situ simultaneous transfer-printing

I. Arief, P. Zimmermann, S. Hait, H. Park, A. K. Ghosh, A. Janke, S. Chattopadhyay, J. Nagel, G. Heinrich, S. Wießner and A. Das, Mater. Horiz., 2022, 9, 1468 DOI: 10.1039/D2MH00074A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements