Issue 6, 2022

Upcycling the carbon emissions from the steel industry into chemicals using three metal oxide loops

Abstract

The iron and steel industry is a carbon-intensive industry and one of the largest industrial sources of CO2 emissions. In this work, we show how the steel mill gases can be conditioned using three metal oxides to produce a CO/CO2 stream that can be used for the production of chemicals, thereby preventing the emission of carbon to the atmosphere as CO2. Abundant oxides of iron and manganese, characterised by their readiness to capture and release gaseous O2, and calcium oxide, characterised by its capacity to capture and release gaseous CO2 can be deployed in this process. Process analysis indicates that by fully utilising the chemical energy of the carbon-rich blast furnace gas (BFG) of the steel mill, 37% of the associated CO2 emissions can be eliminated. A techno-economic evaluation shows that further reduction of CO2 emissions is viable. Preliminary estimations indicate that the cost for processing BFG through the proposed process is 46 EUR2020 per tonneBFG. The sources of revenue are the product CO/CO2 stream (0.2 tonneproduct per tonneBFG) and electricity constituting 85% and 14% of the total revenue with the remaining 1% obtained by the sale of spent metal oxides used in the process. The technical feasibility of the process was experimentally proven in a fixed bed reactor to produce a CO/CO2 stream and an H2O-rich stream while the metal oxides were periodically regenerated in alternating redox conditions. Thirty executed cycles indicated stable performance of the process. The proposed process concept can be applied to any gas stream containing CO2 and fuel.

Graphical abstract: Upcycling the carbon emissions from the steel industry into chemicals using three metal oxide loops

Supplementary files

Article information

Article type
Paper
Submitted
21 Janv. 2022
Accepted
20 Apr. 2022
First published
21 Apr. 2022
This article is Open Access
Creative Commons BY-NC license

Energy Adv., 2022,1, 367-384

Upcycling the carbon emissions from the steel industry into chemicals using three metal oxide loops

V. Singh, L. C. Buelens, H. Poelman, M. Saeys, G. B. Marin and V. V. Galvita, Energy Adv., 2022, 1, 367 DOI: 10.1039/D2YA00018K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements