Issue 3, 2023

Photochemical weathering of polyurethane microplastics produced complex and dynamic mixtures of dissolved organic chemicals

Abstract

Sunlight exposure can naturally mitigate microplastics pollution in the surface ocean, however it results in emissions of dissolved organic carbon (DOC) whose characteristics and fate remain largely unknown. In this work, we investigated the effects of solar radiation on polyether (TPU_Ether) and polyester (TPU_Ester) thermoplastic polyurethane, and on a thermoset polyurethane (PU_Hardened). The microplastics were irradiated with simulated solar light with a UV dose of 350 MJ m−2, which corresponds to roughly 15 months outdoor exposure at 31° N latitude. The particles were characterized using ATR-FTIR and elemental analysis. The DOC released to the aqueous phase was quantified by total organic carbon analysis and characterized by nontarget liquid chromatography coupled to high-resolution mass spectrometry. Polyurethane microplastics were degraded following mechanisms reconcilable with UV photo-oxidation. The carbon mass fraction released to the aqueous phase was 8.5 ± 0.5%, 3.7 ± 0.2%, and 2.8 ± 0.2% for TPU_Ether, TPU_Ester, and PU_Hardened, respectively. The corresponding DOC release rates, expressed as mg carbon per UV dose were 0.023, 0.013, and 0.010 mg MJ−1 for TPU_Ether, TPU_Ester and PU_Hardened, respectively. Roughly three thousand unique by-products were released from photo-weathered TPUs, whereas 540 were detected in the DOC of PU_Hardened. This carbon pool was highly complex and dynamic in terms of physicochemical properties and susceptibility to further photodegradation after dissolution from the particles. Our results show that plastics photodegradation in the ocean requires chemical assessment of the DOC emissions in addition to the analysis of aged microplastics and that polymer chemistry influences the chain scission products.

Graphical abstract: Photochemical weathering of polyurethane microplastics produced complex and dynamic mixtures of dissolved organic chemicals

Supplementary files

Article information

Article type
Paper
Submitted
12 Okt. 2022
Accepted
05 Janv. 2023
First published
11 Janv. 2023
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Processes Impacts, 2023,25, 432-444

Photochemical weathering of polyurethane microplastics produced complex and dynamic mixtures of dissolved organic chemicals

V. Albergamo, W. Wohlleben and D. L. Plata, Environ. Sci.: Processes Impacts, 2023, 25, 432 DOI: 10.1039/D2EM00415A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements