Issue 7, 2023

A cold-responsive liquid crystal elastomer provides visual signals for monitoring a critical temperature decrease

Abstract

Critical temperature indicators have been extensively utilized in various fields, ranging from healthcare to food safety. However, the majority of the temperature indicators are designed for upper critical temperature monitoring, indicating when the temperature rises and exceeds a predefined limit, whereas stringently demanded low critical temperature indicators are scarcely developed. Herein, we develop a new material and system that monitor temperature decrease, e.g., from ambient temperature to the freezing point, or even to an ultra-low temperature of −20 °C. For this purpose, we create a dynamic membrane which can open and close during temperature cycles from high temperature to low temperature. This membrane consists of a gold-liquid crystal elastomer (Au-LCE) bilayer structure. Unlike the commonly used thermo-responsive LCEs which actuate upon temperature rise, our LCE is cold-responsive. This means that geometric deformations occur when the environmental temperature decreases. Specifically, upon temperature decrease the LCE creates stresses at the gold interface by uniaxial deformation due to expansion along the molecular director and shrinkage perpendicular to it. At a critical stress, optimized to occur at the desired temperature, the brittle Au top layer fractures, which allows contact between the LCE and material on top of the gold layer. Material transport via cracks enables the onset of the visible signal for instance caused by a pH indicator substance. We apply the dynamic Au-LCE membrane for cold-chain applications, indicating the loss of the effectiveness of perishable goods. We anticipate that our newly developed low critical temperature/time indicator will be shortly implemented in supply chains to minimize food and medical product waste.

Graphical abstract: A cold-responsive liquid crystal elastomer provides visual signals for monitoring a critical temperature decrease

Supplementary files

Article information

Article type
Communication
Submitted
22 Febr. 2023
Accepted
05 Apr. 2023
First published
05 Apr. 2023
This article is Open Access
Creative Commons BY license

Mater. Horiz., 2023,10, 2649-2655

A cold-responsive liquid crystal elastomer provides visual signals for monitoring a critical temperature decrease

Y. Zhan, D. J. Broer, J. Li, J. Xue and D. Liu, Mater. Horiz., 2023, 10, 2649 DOI: 10.1039/D3MH00271C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements