Issue 10, 2023

A polymer library enables the rapid identification of a highly scalable and efficient donor material for organic solar cells

Abstract

The dramatic improvement of the PCE (power conversion efficiency) of organic photovoltaic devices in the past few years has been driven by the development of new polymer donor materials and non-fullerene acceptors (NFAs). In the design of such materials synthetic scalability is often not considered, and hence complicated synthetic protocols are typical for high-performing materials. Here we report an approach to readily introduce a variety of solubilizing groups into a benzo[c][1,2,5]thiadiazole acceptor comonomer. This allowed for the ready preparation of a library of eleven donor polymers of varying side chains and comonomers, which facilitated a rapid screening of properties and photovoltaic device performance. Donor FO6-T emerged as the optimal material, exhibiting good solubility in chlorinated and non-chlorinated solvents and achieving 15.4% PCE with L8BO as the acceptor (15.2% with Y6) and good device stability. FO6-T was readily prepared on the gram scale, and synthetic complexity (SC) analysis highlighted FO6-T as an attractive donor polymer for potential large scale applications.

Graphical abstract: A polymer library enables the rapid identification of a highly scalable and efficient donor material for organic solar cells

Supplementary files

Article information

Article type
Communication
Submitted
24 Maijs 2023
Accepted
31 Jūl. 2023
First published
02 Aug. 2023
This article is Open Access
Creative Commons BY license

Mater. Horiz., 2023,10, 4202-4212

A polymer library enables the rapid identification of a highly scalable and efficient donor material for organic solar cells

M. Rimmele, Z. Qiao, J. Panidi, F. Furlan, C. Lee, W. L. Tan, C. R. McNeill, Y. Kim, N. Gasparini and M. Heeney, Mater. Horiz., 2023, 10, 4202 DOI: 10.1039/D3MH00787A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements