Cu-catalyzed enantioselective decarboxylative cyanation via the synergistic merger of photocatalysis and electrochemistry†
Abstract
The development of an efficient and straightforward method for decarboxylative coupling using common alkyl carboxylic acid is of great value. However, decarboxylative coupling with nucleophiles always needs stoichiometric chemical oxidants or substrate prefunctionalization. Herein, we report a protocol for Cu-catalyzed enantioselective decarboxylative cyanation via the merger of photocatalysis and electrochemistry. CeCl3 and Cu/BOX were used as co-catalysts to promote the decarboxylation and cyanation, and both catalysts were regenerated via anodic oxidation. This method establishes a proof of concept enantioselective transformation via photoelectrocatalysis. Studies by DFT calculations provided mechanistic insight on enantioselectivity control.
- This article is part of the themed collections: Most popular 2023 organic chemistry articles and In celebration of Chinese New Year