Issue 20, 2023

Emerging indoor photovoltaics for self-powered and self-aware IoT towards sustainable energy management

Abstract

As the number of Internet of Things devices is rapidly increasing, there is an urgent need for sustainable and efficient energy sources and management practices in ambient environments. In response, we developed a high-efficiency ambient photovoltaic based on sustainable non-toxic materials and present a full implementation of a long short-term memory (LSTM) based energy management using on-device prediction on IoT sensors solely powered by ambient light harvesters. The power is supplied by dye-sensitised photovoltaic cells based on a copper(II/I) electrolyte with an unprecedented power conversion efficiency at 38% and 1.0 V open-circuit voltage at 1000 lux (fluorescent lamp). The on-device LSTM predicts changing deployment environments and adapts the devices' computational load accordingly to perpetually operate the energy-harvesting circuit and avoid power losses or brownouts. Merging ambient light harvesting with artificial intelligence presents the possibility of developing fully autonomous, self-powered sensor devices that can be utilized across industries, health care, home environments, and smart cities.

Graphical abstract: Emerging indoor photovoltaics for self-powered and self-aware IoT towards sustainable energy management

Supplementary files

Article information

Article type
Edge Article
Submitted
06 Febr. 2023
Accepted
21 Marts 2023
First published
13 Apr. 2023
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2023,14, 5350-5360

Emerging indoor photovoltaics for self-powered and self-aware IoT towards sustainable energy management

H. Michaels, M. Rinderle, I. Benesperi, R. Freitag, A. Gagliardi and M. Freitag, Chem. Sci., 2023, 14, 5350 DOI: 10.1039/D3SC00659J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements