Issue 24, 2023

Highly controllable and reproducible one-step synthesis of β-NaYF4:Er3+@NaYbF4@NaYF4 upconversion nanoparticles for Sb2(S,Se)3 solar cells with enhanced efficiency

Abstract

Using multilayer structures of upconversion nanophosphors is widely considered an effective and necessary strategy to achieve efficient luminescence. However, the synthesis of high-quality upconversion nanoparticles in a controllable and reproducible manner remains a challenge, especially for the monodisperse growth of core–shell–shell nanocrystals. Herein, we present a well-designed heating strategy that realizes the one-step synthesis of a hexagonal NaYF4 host with ideal particle size and shape and further enables us to accomplish the successive growth of a spherical core containing an activator and conformal dual shells containing a sensitizer. In particular, we discuss the upconversion luminescence mechanism of Yb3+/Er3+ co-doped nanoparticles in detail, which were further introduced into Sb2(S,Se)3 solar cells as an extra light harvester, yielding a nominal power conversion efficiency of 9.17%. The present work helps to further clarify the effect of thermal conditions on the crystal growth and luminescence properties of upconversion nanoparticles, which is important for their practical applications.

Graphical abstract: Highly controllable and reproducible one-step synthesis of β-NaYF4:Er3+@NaYbF4@NaYF4 upconversion nanoparticles for Sb2(S,Se)3 solar cells with enhanced efficiency

Supplementary files

Article information

Article type
Paper
Submitted
13 Janv. 2023
Accepted
04 Apr. 2023
First published
05 Apr. 2023

J. Mater. Chem. A, 2023,11, 12992-12998

Highly controllable and reproducible one-step synthesis of β-NaYF4:Er3+@NaYbF4@NaYF4 upconversion nanoparticles for Sb2(S,Se)3 solar cells with enhanced efficiency

X. Jin, S. W. Leow, Y. Fang and L. H. Wong, J. Mater. Chem. A, 2023, 11, 12992 DOI: 10.1039/D3TA00241A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements