Spin characteristics in conjugated stable diradicals
Abstract
Spin properties are intrinsic characters of electrons. Radical molecules contain unpaired electron(s), and their unique chemical and physical properties make them an ideal platform for investigating spin properties in molecular systems. Among them, the burgeoning interest in stable conjugated diradicals is attributed to their distinctive characteristics, notably the dynamic resonance structures between open-shell and closed-shell forms, the malleability of their spin states, and the profound influence of intermolecular spin–spin interactions. A deep understanding of the spin characteristics of unpaired electrons in stable conjugated diradicals provides guidance for the design, synthesis, and characterization of radical-based materials. In this review, we discuss the unique spin delocalization, spin states, and spin–spin coupling characteristics of conjugated diradicals and emphasize how to precisely control these spin characteristics to understand their role in the molecules and as functional radical materials.
- This article is part of the themed collection: ChemComm 60th Anniversary Collection