Issue 22, 2024

Hot carrier organic solar cells

Abstract

Hot-carrier solar cells use the photon excess energy, that is, the energy exceeding the absorber bandgap, to do additional work. These devices have the potential to beat the upper limit for the photovoltaic power conversion efficiency set by near-equilibrium thermodynamics. However, since their conceptual inception in 1982, no experimental realization that works under normal operational conditions has been demonstrated, mostly due to the fast thermalization of photo-generated charges in typical semiconductor materials. Here, we use noise spectroscopy in combination with numerical modelling to show that common bulk heterojunction organic solar cells actually work as hot-carrier devices. Due to static energetic disorder, thermalization of photo-generated electrons and holes in the global density of states is slow compared to the charge carrier lifetime, leading to thermal populations of localized charge carriers that have an electronic temperature exceeding the lattice temperature. Since charge extraction takes place in a high-lying, narrow energy window around the transport energy, the latter takes the role of an energy filter. For common disorder values, this leads to enhancements in open circuit voltage of up to ∼0.2 V. We show that this enhancement can be understood as a thermovoltage that is proportional to the temperature difference between the lattice and the charge populations and that comes on top of the near-equilibrium quasi-Fermi level splitting.

Graphical abstract: Hot carrier organic solar cells

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
14 Jūn. 2024
Accepted
03 Okt. 2024
First published
04 Okt. 2024
This article is Open Access
Creative Commons BY license

Energy Environ. Sci., 2024,17, 8683-8690

Hot carrier organic solar cells

P. Viji, C. Tormann, C. Göhler and M. Kemerink, Energy Environ. Sci., 2024, 17, 8683 DOI: 10.1039/D4EE02612H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements