Volume 248, 2024

Template assisted lithium superoxide growth for lithium–oxygen batteries

Abstract

Developing batteries with energy densities comparable to internal combustion technology is essential for a worldwide transition to electrified transportation. Li–O2 batteries are seen as the ‘holy grail’ of battery technologies since they have the highest theoretical energy density of all battery technologies. Current lithium–oxygen (Li–O2) batteries suffer from large charge overpotentials related to the electronic resistivity of the insulating lithium peroxide (Li2O2) discharge product. One potential solution is the formation and stabilization of a lithium superoxide (LiO2) discharge intermediate that exhibits good electronic conductivity. However, LiO2 is reported to be unstable at ambient temperature despite its favorable formation energy at −1.0 eV per atom. In this paper – based on our recent work on the development of cathode materials for aprotic lithium oxygen batteries including two intermetallic compounds, LiIr3 and LiIr, that are found to form good template interfaces with LiO2 – a simple goodness of fit R factor to gauge how well a template surface structure can support LiO2 growth, is developed. The R factor is a quantitative measurement to calculate the geometric difference in the unit cells of specific Miller Index 2D planes of the template surface and LiO2. Using this as a guide, the R factors for LiIr3, LiIr, and La2NiO4+δ, are found to be good. This guide is attested by simple extension to other noble metal intermetallics with electrochemical cycling data including LiRh3, LiRh, and Li2Pd. Finally, the template concept is extended to main group elements and the R factors for LiO2 (111) and Li2Ca suggest that Li2Ca is a possible candidate for the template assisted LiO2 growth strategy.

Graphical abstract: Template assisted lithium superoxide growth for lithium–oxygen batteries

Associated articles

Article information

Article type
Paper
Submitted
07 Jūn. 2023
Accepted
24 Jūl. 2023
First published
17 Aug. 2023

Faraday Discuss., 2024,248, 48-59

Author version available

Template assisted lithium superoxide growth for lithium–oxygen batteries

H. Wang, C. Zhang, J. Gao, K. C. Lau, S. T. Plunkett, M. Park, R. Amine and L. A. Curtiss, Faraday Discuss., 2024, 248, 48 DOI: 10.1039/D3FD00116D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements