The role of reticular chemistry in photoenzymatic reaction
Abstract
Photoenzymatic catalysis offers promising opportunities for chemical transformations that are often challenging to achieve with traditional catalytic methods. However, the practical implementation of this technique is hindered by issues such as structural fragility, low operational stability, and limited recyclability. Recently, reticular framework materials (RFMs), including metal–organic frameworks (MOFs), covalent organic frameworks (COFs), and hydrogen-bonding organic frameworks (HOFs), have garnered significant interest as functional scaffolds for integration with photoenzymatic systems. These RFMs provide protection and enable reusability for homogeneous photoenzymatic systems. Due to the immense chemical and structural tunability derived from their organic and inorganic building units, RFMs offer opportunities to develop effective and efficient integrated photoenzymatic enzyme/RFM systems. In this review, we first discuss recent progress in RFMs and their applications in enzyme immobilization, as well as categories of photoenzymatic reactions. We then summarize design strategies for RFM-based photoenzymatic systems. Finally, our perspectives on the considerations for RFM design in constructing photoenzymatic systems, as well as the research challenges and potential future directions for RFM-based integrated photoenzymatic systems were presented.
- This article is part of the themed collection: 2024 Green Chemistry Reviews