Issue 15, 2024

Quantitative reagent monitoring in paper-based electrochemical rapid diagnostic tests

Abstract

Paper-based rapid diagnostic tests (RDTs) are an essential component of modern healthcare, particularly for the management of infectious diseases. Despite their utility, these capillary-driven RDTs are compromised by high failure rates, primarily caused by user error. This limits their utility in complex assays that require multiple user operations. Here, we demonstrate how this issue can be directly addressed through continuous electrochemical monitoring of reagent flow inside an RDT using embedded graphenized electrodes. Our method relies on applying short voltage pulses and measuring variations in capacitive discharge currents to precisely determine the flow times of injected samples and reagents. This information is reported to the user, guiding them through the testing process, highlighting failure cases and ultimately decreasing errors. Significantly, the same electrodes can be used to quantify electrochemical signals from immunoassays, providing an integrated solution for both monitoring assays and reporting results. We demonstrate the applicability of this approach in a serology test for the detection of anti-SARS-CoV-2 IgG in clinical serum samples. This method paves the way towards “smart” RDTs able to continuously monitor the testing process and improve the robustness of point-of-care diagnostics.

Graphical abstract: Quantitative reagent monitoring in paper-based electrochemical rapid diagnostic tests

Supplementary files

Article information

Article type
Communication
Submitted
03 Maijs 2024
Accepted
20 Jūn. 2024
First published
28 Jūn. 2024
This article is Open Access
Creative Commons BY-NC license

Lab Chip, 2024,24, 3651-3657

Quantitative reagent monitoring in paper-based electrochemical rapid diagnostic tests

L. Bezinge, A. J. deMello, C. Shih and D. A. Richards, Lab Chip, 2024, 24, 3651 DOI: 10.1039/D4LC00390J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements