Transition metal ion-doped cesium lead halide perovskite nanocrystals: doping strategies and luminescence design
Abstract
Cesium lead halide perovskite nanocrystals have received considerable attention due to their extraordinary optoelectronic properties including tunable bandgaps over the entire visible spectral region, high photoluminescence quantum yields, and narrow emission band widths. Transition metal ion doping in cesium lead halide perovskite nanocrystals, emerging as an effective method to manipulate the optical properties, is of vital importance for their fundamental research and applications ranging from light-emitting diodes, solar cells, and microlasers to X-ray detection. In this review, we provide an overview of the most recent advances in the design of transition metal ion-doped lead halide perovskite nanocrystals. We briefly introduce several typical strategies for effective doping of transition metal ions in cesium lead halide perovskite nanocrystals. By virtue of transition metal ion doping, we then highlight the manipulation of the optical properties of cesium lead halide perovskite nanocrystals, which includes improving stability, enhancing luminescence efficiency, and tuning emission band and luminescence lifetime. Finally, the challenges and prospects of this active research field are discussed.
- This article is part of the themed collections: FOCUS: Perovskite Materials and Devices, FOCUS: Light-emitting diodes technology and 2023 Materials Chemistry Frontiers Review-type Articles