Fulleride superconductivity tuned by elastic strain due to cation compositional disorder†
Abstract
Dynamical fluctuations of the elastic strain in strongly correlated systems are known to affect the onset of metal-to-insulator or superconducting transitions. Here we report their effect on the properties of a family of bandwidth-controlled alkali-intercalated fullerene superconductors. We introduce elastic strain through static local structural disorder in a systematic and controllable way in the fcc-structured KxCs3−xC60 (with potassium content, 0.22 ≤ xK ≤ 2) series of compositions by utilizing the difference in size between the K+ and Cs+ co-dopants. The occurrence of the crossover from the Mott–Jahn–Teller insulating (MJTI) state into the strongly correlated Jahn–Teller metal (JTM) on cooling is evidenced for the compositions with xK < 1.28 by both synchrotron X-ray powder diffraction (SXRPD) – anomalous reduction of the unit cell volume – and 133Cs NMR spectroscopy – sudden suppression in the 133Cs spin-lattice relaxation rates. The emerging superconducting state with a maximum critical temperature, Tc = 30.9 K shows a characteristic dome-like dependence on the unit-cell volume or equivalently, on the ratio between the on-site Coulomb repulsion, U, and the bandwidth, W. However, compared to the parent Cs3C60 composition in which cation disorder effects are completely absent, the maximum Tc is lower by ∼12%. The reduction in Tc displays a linear dependence on the variance of the tetrahedral-site cation size, σT2, thus establishing a clear link between structural-disorder–induced attenuation of critical elastic strain fluctuations and the electronic ground state.
- This article is part of the themed collection: 2024 Chemical Science Covers