Sheet-like ZnCo2O4 microspheres and pomelo peel waste-derived activated carbon for high performance solid state asymmetric supercapacitors†
Abstract
A novel asymmetric supercapacitor based on zinc cobalt oxide (ZnCo2O4) as a positive electrode and pomelo peel-based activated carbon (PPAC-4) as a negative electrode was fabricated. ZnCo2O4 was synthesized using hydrothermal method and shows a distinct sheet-like structure clubbed together to form microspheres. PPAC-4 was synthesized via the chemical activation of pomelo peel hydrochar using KHCO3 as the activation agent. The as-prepared ZnCo2O4 microspheres displayed maximum specific capacitance of 422 F g−1 at an applied current density of 1 A g−1, whereas PPAC-4 demonstrated a capacitance of 356 F g−1 at a current density of 1 A g−1. Moreover, the novel ZnCo2O4//PPAC-4 asymmetric solid-state supercapacitor with hydroxyethyl cellulose/potassium hydroxide (HEC/KOH) gel electrolyte displayed maximum operating voltage of 1.6 V with a superior energy density of 29.8 W h kg−1 at a power density of 796.3 W kg−1. Besides, a long-term cycling stability of 83% was achieved after 10 000 charge/discharge cycles, indicating its promise for future energy storage applications.
- This article is part of the themed collection: Recent Open Access Articles