Nanomaterials for managing abiotic and biotic stress in the soil–plant system for sustainable agriculture

Abstract

As the global population steadily increases, the need to increase agricultural productivity has become more pressing. It is estimated that agricultural production needs to double in less than 30 years to meet the projected food demand. However, crop species are being cultivated under a range of increasingly challenging environmental stressors, including the effects of climate change and factors. To address these issues, nanotechnology has emerged as an enabling strategy to bolster plant resistance to the adverse effects of stressors and improve their overall performance. In this review, we evaluate recent research in this field, examining the strategies by which nanomaterials (NMs) and nanoparticles (NPs) have been used to facilitate enhanced tolerance to pests, excessive salinity in soil, pathogenic fungi, and other stressors. The intent is to focus on the mechanisms by which plants cope with environmental stressors at the physiological and molecular levels. We also examine how plants interact with and acquire NMs, with a specific focus on the mechanisms behind their beneficial effects regarding stress response. Our review also evaluates key knowledge gaps and offers suggestions on how to address them. Additionally, we discuss the potential of NMs to enhance agricultural production systems and highlight essential considerations for mitigating crop stress and promoting sustainable agriculture at a global scale. While the use of nanotechnology in the agricultural sector is growing and shows tremendous promise, more mechanistic studies and field-scale demonstrations are needed to fully understand and optimize the use of nanomaterials on plants stress tolerance in a changing climate. In addition, few studies conducted life cycle field experiments to verify the effects of nano-agrichemicals on yield and nutritional quality, and importantly, there is a lack of multiple-year and multiple-location experiments. Only by doing this can the technology-readiness-level of nano-enabled agro-technologies be improved and forwarded to commercial application.

Graphical abstract: Nanomaterials for managing abiotic and biotic stress in the soil–plant system for sustainable agriculture

Supplementary files

Article information

Article type
Critical Review
Submitted
30 Aug. 2024
Accepted
03 Nov. 2024
First published
27 Nov. 2024

Environ. Sci.: Nano, 2025, Advance Article

Nanomaterials for managing abiotic and biotic stress in the soil–plant system for sustainable agriculture

L. Ochoa, M. Shrivastava, S. Srivastava, K. Cota-Ruiz, L. Zhao, J. C. White, J. A. Hernandez-Viezcas and J. L. Gardea-Torresdey, Environ. Sci.: Nano, 2025, Advance Article , DOI: 10.1039/D4EN00789A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements