Unearthing the emerging properties at buried oxide heterointerfaces: the γ-Al2O3/SrTiO3 heterostructure

Abstract

The symmetry breaking that is formed when oxide layers are combined epitaxially to form heterostructures has led to the emergence of new functionalities beyond those observed in the individual parent materials. SrTiO3-based heterostructures have played a central role in expanding the range of functional properties arising at the heterointerface and elucidating their mechanistic origin. The heterostructure formed by the epitaxial combination of spinel γ-Al2O3 and perovskite SrTiO3 constitutes a striking example with features distinct from perovskite/perovskite counterparts such as the archetypical LaAlO3/SrTiO3 heterostructure. Here, non-isomorphic epitaxial growth of γ-Al2O3 on SrTiO3 can be achieved even at room temperature with the epitaxial union of the two distinct crystal structures resulting in modification of the functional properties by the broken cationic symmetry. The heterostructure features oxygen vacancy-mediated conductivity with dynamically adjustable electron mobilities as high as 140 000 cm2 V−1 s−1 at 2 K, strain-tunable magnetism and an unsaturated linear magnetoresistance exceeding 80 000% at 15 T and 2 K. Here, we review the structural, electronic and magnetic characteristics of the γ-Al2O3/SrTiO3 heterostructure with a particular emphasis on elucidating the underlying mechanistic origins of the various properties. We further show that γ-Al2O3/SrTiO3 may break new grounds for tuning the electronic and magnetic properties through dynamic defect engineering and polarity modifications, and also for band engineering, symmetry breaking and silicon integration.

Graphical abstract: Unearthing the emerging properties at buried oxide heterointerfaces: the γ-Al2O3/SrTiO3 heterostructure

Article information

Article type
Review Article
Submitted
02 Sept. 2024
Accepted
23 Dec. 2024
First published
10 Janv. 2025

Mater. Horiz., 2025, Advance Article

Unearthing the emerging properties at buried oxide heterointerfaces: the γ-Al2O3/SrTiO3 heterostructure

T. S. Steegemans and D. V. Christensen, Mater. Horiz., 2025, Advance Article , DOI: 10.1039/D4MH01192A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements