Recent advances in fundamental research on photon avalanches on the nanometre scale

Abstract

In recent years, Photon Avalanche (PA) on the nanometre scale has emerged as a groundbreaking phenomenon, enabling the generation of high-energy photons with minimal pumping power due to its highly nonlinear optical dynamics. This review focuses on the advancement in photon-avalanching nanoparticles (ANPs), composed of lanthanide ion-doped inorganic matrices, which exhibit remarkable optical nonlinear response under low-power excitation. The objective of this article is to provide a comprehensive overview of the PA mechanism in nanoscale materials, with a specific focus on single-ANP systems. Key factors influencing the PA characteristics, such as excitation-power threshold, excited-state absorption, cross-relaxation process, dopant ion concentration, and temperature sensitivity are summarized. Furthermore, the review situates recent ANP research within the broader context of early studies on the PA mechanism observed in bulk crystals and optical fibers, highlighting the distinctive features and applications of ANPs. Notable applications discussed include single-particle and biological super-resolution imaging, deep-tissue imaging, luminescence thermometry, ANP-based lasers, optical data storage, and information security. The paper also addresses current challenges and limitations of ANPs in practical applications, proposing potential solutions and future research directions to facilitate their integration into real-world environments. This review aims to serve as a valuable resource for researchers seeking to advance the understanding and application of ANPs in various scientific and technological domains.

Graphical abstract: Recent advances in fundamental research on photon avalanches on the nanometre scale

Article information

Article type
Review Article
Submitted
26 Aug. 2024
Accepted
17 Janv. 2025
First published
14 Febr. 2025
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2025, Advance Article

Recent advances in fundamental research on photon avalanches on the nanometre scale

S. Aggarwal, Nanoscale, 2025, Advance Article , DOI: 10.1039/D4NR03493G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements