In situ QXAFS study of CO and H2 adsorption on Pt in [PtAu8(PPh3)8]-H[PMo12O40] solid†
Abstract
The adsorption behaviors of H2 and CO molecules in crown-motif [PtAu8(PPh3)8]-H[PMo12O40] (PtAu8-PMo12) solids were investigated by in situ quick-scan X-ray absorption fine structure (QXAFS) measurements with a time resolution of 0.1 s. The electronic state of Pt in PtAu8-PMo12 was drastically changed by the adsorption of H2 and CO molecules because of the formation of Pt–H2/Pt–CO interactions. H2 was adsorbed more rapidly (<0.5 s) on Pt than CO (∼2.5 s) and showed reversible adsorption/desorption behavior on Pt atoms in PtAu8-PMo12. The rapid adsorption of H2 is due to the fast diffusion of H2, which has a smaller kinetic diameter than CO, in the narrow channels between the closed voids in PtAu8-PMo12. Meanwhile, CO was irreversibly adsorbed on Pt, resulting in structural isomerization to the stable “chalice-motif” PtAu8, which was determined by XAFS analysis and density functional theory calculations. Structural isomerization was involved by pushing ligands aside to make space for CO adsorption as the void size near Pt in the crown-motif PtAu8-PMo12 was narrower than the kinetic diameter of CO.
- This article is part of the themed collection: Metal nanoclusters