Adding multiple electrons to helicenes: how they respond?

Abstract

Helicenes of increasing dimensions and complexity have recently burst into the scene due to their unique structures coupled with interesting chiral, optical, and conducting properties. The helicene-related research has quickly progressed from fundamental curiosity to a diverse range of applications in organic catalysis, optoelectronic devices, chiroptical switches, sensors, and energy storage. The in-depth understanding of electron accepting properties of helicenes should further advance their materials chemistry applications, however, previous reports only relied on spectrocopic and electrochemical studies, while their structural changes weren't extensively discussed. Therefore, we initiated a broad investigation of chemical reduction behaviour of helicenes ranging in size and properties coupled with X-ray diffraction characterization of the reduced products. The responses of helicenes with different structures to the stepwise electron addition were investigated using a combination of X-ray crystallography, spectroscopic methods, and calculations. This study revealed topology- and charge-dependent consequences of chemical reduction ranging from reversible geometry perturbation to irreversible core transformation and site-specific reactivity of helicenes in addition to original alkali metal coordination patterns. This overview is focused on the crystallographically confirmed examples stemming from chemical reduction reactions of different helicenes with alkali metals. The opened discussion should stimulate further exploration of reactivity and complexation of novel π-expanded and heteroatom-doped helicenes based on the revealed structure–property correlations, thus advancing their applications as intriguing new materials.

Graphical abstract: Adding multiple electrons to helicenes: how they respond?

Article information

Article type
Perspective
Submitted
07 Sept. 2024
Accepted
08 Nov. 2024
First published
22 Nov. 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Advance Article

Adding multiple electrons to helicenes: how they respond?

Z. Zhou and M. A. Petrukhina, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D4SC06062H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements