Nematic liquid crystal flow driven by time-varying active surface anchoring†
Abstract
We demonstrate the generation of diverse material flow regimes in nematic liquid cells as driven by time-variable active surface anchoring, including no-net flow, oscillatory flow, steady flow, and pulsating flow. Specifically, we numerically simulate a passive nematic fluid inside a cell bounded with two flat solid boundaries at which the time-dependent anchoring is applied with the dynamically variable surface anchoring easy axis. We show that different flow regimes emerge as the result of different anchoring driving directions (i.e. co-rotating or counter-rotating) and relative phase of anchoring driving. The flow magnitude is tunable by cell thickness and anchoring driving frequency. More generally, this work aims towards possible applications of responsive time-variable surfaces, including photonics or synthetic active matter.
- This article is part of the themed collection: Soft Matter 20th Anniversary Collection