Cost-motivated pathways towards near-term decarbonization of the cement industry†
Abstract
Cement production facilities contribute over 8% of global carbon dioxide (CO2) emissions, with approximately 60% of these emissions stemming from process-related activities and the remaining 40% from energy consumption. This unique emission profile means that merely decarbonizing the energy source will be insufficient to achieve net-zero emissions for this sector. Recognizing the hard-to-decarbonize nature of the cement industry, this perspective investigates the costs associated with implementing retrofit decarbonization options at existing cement facilities to expedite emissions reduction. We evaluate the impact of clinker replacement, alternative fuels, point source capture, and direct air capture on both total CO2 emissions and cement production costs. After validating the emissions and costs for baseline cement production and each decarbonization strategy, we develop dispatch curves (a method to sequentially compare costs and removal capacities across available technologies) to identify the most cost-effective pathways to achieve net-zero emissions. Through this analysis, we reveal that utilizing all four decarbonization strategies is potentially the most cost effective and can facilitate a net-zero future for the cement industry with a 29% increase in cement costs. We also explore deployment strategies and tailored solutions for individual facilities. This work builds on substantial progress in the field by analyzing the combined potential of these sustainable technologies to help the industry meet its decarbonization goals.
- This article is part of the themed collections: Renewables showcase and RSC Sustainability Recent Review Articles