Issue 2, 2012

Fullerenecrystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells

Abstract

Solution processed polymer/fullerene blend films are receiving extensive attention as the photoactive layer of organic solar cells. In this paper we report a range of photophysical, electrochemical, physicochemical and structural data which provide evidence that formation of a relatively pure, molecularly ordered phase of the fullerene component, phenyl-C61-butyric acid methyl ester (PCBM), may be the key factor driving the spatial separation of photogenerated electrons and holes in many of these devices. PCBM crystallisation is shown to result in an increase in its electron affinity, providing an energetic driving force for spatial separation of electrons and holes. Based upon our observations, we propose a functional model applicable to many organic bulk heterojunction devices based upon charge generation in a finely intermixed polymer/fullerene phase followed by spatial separation of electrons and holes at the interface of this mixed phase with crystalline PCBM domains. This model has significant implications for the design of alternative acceptor materials to PCBM for organic solar cells.

Graphical abstract: Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells

Supplementary files

Article information

Article type
Edge Article
Submitted
14 Sept. 2011
Accepted
17 Okt. 2011
First published
19 Okt. 2011

Chem. Sci., 2012,3, 485-492

Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells

F. C. Jamieson, E. B. Domingo, T. McCarthy-Ward, M. Heeney, N. Stingelin and J. R. Durrant, Chem. Sci., 2012, 3, 485 DOI: 10.1039/C1SC00674F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements