Issue 24, 2016

Evidence for 5d-σ and 5d-π covalency in lanthanide sesquioxides from oxygen K-edge X-ray absorption spectroscopy

Abstract

The electronic structure in the complete series of stable lanthanide sesquioxides, Ln2O3 (Ln = La to Lu, except radioactive Pm), has been evaluated using oxygen K-edge X-ray absorption spectroscopy (XAS) with a scanning transmission X-ray microscope (STXM). The experimental results agree with recent synthetic, spectroscopic and theoretical investigations that provided evidence for 5d orbital involvement in lanthanide bonding, while confirming the traditional viewpoint that there is little Ln 4f and O 2p orbital mixing. However, the results also showed that changes in the energy and occupancy of the 4f orbitals can impact Ln 5d and O 2p mixing, leading to several different bonding modes for seemingly identical Ln2O3 structures. On moving from left to right in the periodic table, abrupt changes were observed for the energy and intensity of transitions associated with Ln 5d and O 2p antibonding states. These changes in peak intensity, which were directly related to the amounts of O 2p and Ln 5d mixing, were closely correlated to the well-established trends in the chemical accessibility of the 4f orbitals towards oxidation or reduction. The unique insight provided by the O K-edge XAS is discussed in the context of several recent theoretical and physical studies on trivalent lanthanide compounds.

Graphical abstract: Evidence for 5d-σ and 5d-π covalency in lanthanide sesquioxides from oxygen K-edge X-ray absorption spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
25 Janv. 2016
Accepted
04 Marts 2016
First published
16 Marts 2016

Dalton Trans., 2016,45, 9948-9961

Evidence for 5d-σ and 5d-π covalency in lanthanide sesquioxides from oxygen K-edge X-ray absorption spectroscopy

A. B. Altman, J. I. Pacold, J. Wang, W. W. Lukens and S. G. Minasian, Dalton Trans., 2016, 45, 9948 DOI: 10.1039/C6DT00358C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements