Issue 44, 2016

The polynuclear complex Cu4I4py4 loaded in mesoporous silica: photophysics, theoretical investigation, and highly sensitive oxygen sensing application

Abstract

The polynuclear complex Cu4I4py4 has been largely studied in solution and in the powder form due to its interesting luminescent properties, which are largely dependent on temperature and pressure. In this work, we present the synthesis of the complex and its wet impregnation in a mesoporous silica host obtained by sol–gel methodology. For optimized loadings, the well-dispersed guest molecules exhibit strong interaction with molecular oxygen, resulting in a significant quenching of the luminescence. The process is highly reversible with a Stern–Volmer constant of Ksv = 33.8, which is the largest value found in the literature for similar complexes in the solid state, suggesting that the new material is a promising candidate for high sensitivity oxygen sensing. Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) calculations reveal a weak intermolecular interaction between the two guest complexes in the excited state, suggesting the formation of an excited state complex (excimer). The assumption of a triplet excimer formation is confirmed by temperature- and concentration-dependent experiments, which provides a new way to explain the giant Stokes shift observed for the guest complex in different media.

Graphical abstract: The polynuclear complex Cu4I4py4 loaded in mesoporous silica: photophysics, theoretical investigation, and highly sensitive oxygen sensing application

Supplementary files

Article information

Article type
Paper
Submitted
05 Aug. 2016
Accepted
02 Okt. 2016
First published
03 Okt. 2016

Dalton Trans., 2016,45, 17652-17661

The polynuclear complex Cu4I4py4 loaded in mesoporous silica: photophysics, theoretical investigation, and highly sensitive oxygen sensing application

L. P. Ravaro, Tiago. R. Almeida, R. Q. Albuquerque and A. S. S. de Camargo, Dalton Trans., 2016, 45, 17652 DOI: 10.1039/C6DT03121H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements