Issue 18, 2017

Mastering the non-equilibrium assembly and operation of molecular machines

Abstract

In mechanically interlocked compounds, such as rotaxanes and catenanes, the molecules are held together by mechanical rather than chemical bonds. These compounds can be engineered to have several well-defined mechanical states by incorporating recognition sites between the different components. The rates of the transitions between the recognition sites can be controlled by introducing steric “speed bumps” or electrostatically switchable gates. A mechanism for the absorption of energy can also be included by adding photoactive, catalytically active, or redox-active recognition sites, or even charges and dipoles. At equilibrium, these Mechanically Interlocked Molecules (MIMs) undergo thermally activated transitions continuously between their different mechanical states where every transition is as likely as its microscopic reverse. External energy, for example, light, external modulation of the chemical and/or physical environment or catalysis of an exergonic reaction, drives the system away from equilibrium. The absorption of energy from these processes can be used to favour some, and suppress other, transitions so that completion of a mechanical cycle in a direction in which work is done on the environment – the requisite of a molecular machine – is more likely than completion in a direction in which work is absorbed from the environment. In this Tutorial Review, we discuss the different design principles by which molecular machines can be engineered to use different sources of energy to carry out self-organization and the performance of work in their environments.

Graphical abstract: Mastering the non-equilibrium assembly and operation of molecular machines

Article information

Article type
Tutorial Review
Submitted
27 Janv. 2017
First published
24 Marts 2017

Chem. Soc. Rev., 2017,46, 5491-5507

Mastering the non-equilibrium assembly and operation of molecular machines

C. Pezzato, C. Cheng, J. F. Stoddart and R. D. Astumian, Chem. Soc. Rev., 2017, 46, 5491 DOI: 10.1039/C7CS00068E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements