Volume 196, 2017

Aggregation induced enhanced and exclusively highly Stokes shifted emission from an excited state intramolecular proton transfer exhibiting molecule

Abstract

The inner filter effect due to self-quenching dominates the normal emission of dyes at higher concentrations, which would limit their applications. Since normal emission was also observed with aggregation induced emission enhancement (AIEE) active excited state intramolecular proton transfer (ESIPT) exhibiting molecules, two new molecules are synthesized and studied to obtain normal emission free AIEE. The molecules are 4-(3-(benzo[d]thiazol-2-yl)-5-tert-butyl-4-hydroxybenzyl)-2-(benzo[d]thiazol-2-yl)-6-tert-butyl phenol (bis-HPBT) and its oxazole analogue (bis-HPBO). Of these molecules, bis-HPBT, which is weakly fluorescent in tetrahydrofuran solution, shows a sudden high enhancement in fluorescence upon addition of 70% water due to the formation of aggregates. Though the normal emission is also observed in tetrahydrofuran, it is completely eliminated in the aggregates, and the aggregates display exclusive tautomer emission. However, bis-HPBO does not emit such an exclusive tautomer emission in the water/tetrahydrofuran mixture. The enhancement in the fluorescence quantum yield of bis-HPBT in 70% water is ∼300 times higher than that in tetrahydrofuran. The modulated molecular structure of bis-HPBT is the cause of this outstanding AIEE. The observation of almost exclusive tautomer emission is a new additional advantage of AIEE from bis-HPBT over other ESIPT molecules. Since the tautomer emission is highly Stokes shifted, no overlap with the absorption spectrum occurs and therefore, the inner filter effect is averted. The aggregated structure acts as a good fluorescence chemosensor for metal ions as well as anions. The aggregated structure is cell permeable and can be used for cell imaging.

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
14 Jūl. 2016
Accepted
05 Aug. 2016
First published
05 Aug. 2016

Faraday Discuss., 2017,196, 71-90

Aggregation induced enhanced and exclusively highly Stokes shifted emission from an excited state intramolecular proton transfer exhibiting molecule

S. K. Behera, A. Murkherjee, G. Sadhuragiri, P. Elumalai, M. Sathiyendiran, M. Kumar, B. B. Mandal and G. Krishnamoorthy, Faraday Discuss., 2017, 196, 71 DOI: 10.1039/C6FD00171H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements