Volume 199, 2017

Direct observation of active material interactions in flowable electrodes using X-ray tomography

Abstract

Understanding electrical percolation and charging mechanisms in electrochemically active biphasic flowable electrodes is critical for enabling scalable deionization (desalination) and energy storage. Flowable electrodes are dynamic material systems which store charge (remove ions) and have the ability to flow. This flow process can induce structural changes in the underlying material arrangement and result in transient and non-uniform material properties. Carbon-based suspensions are opaque, multi-phase, and three dimensional, and thus prior characterization of the structural properties has been limited to indirect methods (electrochemical and rheology). Herein, a range of mixed electronic and ionically conducting suspensions are evaluated to determine their static structure, function, and properties, utilizing synchrotron radiation X-ray tomographic microscopy (SRXTM). The high brilliance of the synchrotron light enables deconvolution of the liquid and solid phases. Reconstruction of the solid phase reveals agglomeration cluster volumes between 10 μm3 and 103 μm3 (1 pL) for low loaded samples (5 wt% carbon). The largest agglomeration cluster in the low loaded sample (5 wt%) occupied only 3% of the reconstructed volume whereas samples loaded with 10 wt% activated carbon demonstrated electrically connected clusters that occupied 22% of the imaged region. The highly loaded samples (20 wt%) demonstrated clusters of the order of a microliter, which accounted for 63–85% of the imaged region. These results demonstrate a capability for discerning the structural properties of biphasic systems utilizing SRXTM techniques, and show that discontinuity in the carbon particle networks induces decreased material utilization in low-loaded flowable electrodes.

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
26 Nov. 2016
Accepted
16 Janv. 2017
First published
19 Janv. 2017

Faraday Discuss., 2017,199, 511-524

Direct observation of active material interactions in flowable electrodes using X-ray tomography

K. B. Hatzell, J. Eller, S. L. Morelly, M. H. Tang, N. J. Alvarez and Y. Gogotsi, Faraday Discuss., 2017, 199, 511 DOI: 10.1039/C6FD00243A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements