Issue 8, 2018

Interaction of H2O with CO: potential energy surface, bound states and scattering calculations

Abstract

Collisions between H2O and CO play a crucial role in the gaseous component of comets and protoplanetary disks. We present here a five-dimensional potential energy surface (PES) for the H2O–CO collisional complex. Ab initio calculations were carried out using the explicitly-correlated closed-shell single- and double-excitation coupled cluster approach with the non-iterative perturbative treatment of triple excitations [CCSD(T)-F12a] method with the augmented correlation-consistent aug-cc-pVTZ basis sets. The most stable configuration of the complex, where the carbon atom of CO is pointing towards the OH bond of water, has a binding energy De = 646.1 cm−1. The end-over-end rotational constant of the H2O–CO complex was extracted from bound state calculations and it was found to be B0 = 0.0916 cm−1, in excellent agreement with experimental measurements. Finally, cross sections for the rotational excitation of CO by H2O are computed for s-wave (J = 0) scattering at the full close-coupling level of theory. These results will serve as a benchmark for future studies.

Graphical abstract: Interaction of H2O with CO: potential energy surface, bound states and scattering calculations

Supplementary files

Article information

Article type
Paper
Submitted
13 Sept. 2017
Accepted
18 Okt. 2017
First published
18 Okt. 2017

Phys. Chem. Chem. Phys., 2018,20, 5469-5477

Interaction of H2O with CO: potential energy surface, bound states and scattering calculations

Y. N. Kalugina, A. Faure, A. van der Avoird, K. Walker and F. Lique, Phys. Chem. Chem. Phys., 2018, 20, 5469 DOI: 10.1039/C7CP06275C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements