Issue 11, 2018

Soft phonon modes from off-center Ge atoms lead to ultralow thermal conductivity and superior thermoelectric performance in n-type PbSe–GeSe

Abstract

Historically PbSe has underperformed PbTe in thermoelectric efficiency and has been regarded as an inferior relative to its telluride congener. However, the fifty-fold greater natural abundance of Se relative to Te makes PbSe appealing as a thermoelectric material. We report that the n-type GeSe-alloyed PbSe system achieves a peak figure of merit, ZT, of ∼1.54 at 773 K and maintains ZT values above 1.2 over a broad temperature range from 623 K to 923 K. The highest performing composition is Sb-doped PbSe–12%GeSe, which exhibits an ultralow lattice thermal conductivity of ∼0.36 W m−1 K−1 at 573 K, close to the limit of amorphous PbSe. Theoretical studies reveal that the alloyed Ge2+ atoms prefer to stay at off-center lattice positions, inducing low frequency modes. The Ge atoms also cause the unexpected behavior where the next nearest atom neighbors (6 Pb atoms) oscillate at lower frequencies than in pure PbSe leading to a large reduction of the Debye temperature and acoustic phonon velocity. The Pb0.9955Sb0.0045Se–12%GeSe system also shows Ge-rich precipitates and many aligned dislocations within its microstructure which also contribute to phonon scattering. The resultant average ZT (ZTavg), a broad measure of the material's potential for functional thermoelectric modules, is 1.06 from 400 K to 800 K, the highest among all previously reported n- and p-type PbSe. This value matches or exceeds even those of the best n-type PbTe-based thermoelectric materials.

Graphical abstract: Soft phonon modes from off-center Ge atoms lead to ultralow thermal conductivity and superior thermoelectric performance in n-type PbSe–GeSe

Supplementary files

Article information

Article type
Paper
Submitted
16 Jūn. 2018
Accepted
08 Aug. 2018
First published
13 Aug. 2018

Energy Environ. Sci., 2018,11, 3220-3230

Author version available

Soft phonon modes from off-center Ge atoms lead to ultralow thermal conductivity and superior thermoelectric performance in n-type PbSe–GeSe

Z. Luo, S. Hao, X. Zhang, X. Hua, S. Cai, G. Tan, T. P. Bailey, R. Ma, C. Uher, C. Wolverton, V. P. Dravid, Q. Yan and M. G. Kanatzidis, Energy Environ. Sci., 2018, 11, 3220 DOI: 10.1039/C8EE01755G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements