Issue 3, 2019

In vivo targeting of DNA vaccines to dendritic cells using functionalized gold nanoparticles

Abstract

The clinical success of dendritic cell (DC)-based genetic immunization remains critically dependent on the availability of effective and safe nano-carriers for targeting antigen-encoded DNA vaccines to DCs, the most potent antigen-presenting cells in the human body in vivo. Recent studies revealed the efficacies of mannose receptor-mediated in vivo DC-targeted genetic immunization by liposomal DNA vaccine carriers containing both mannose-mimicking shikimoyl and transfection enhancing guanidinyl functionalities. However, to date, the efficacies of this approach have not been examined for metal-based nanoparticle DNA vaccine carriers. Herein, we report for the first time, the design, synthesis, physico-chemical characterization and bioactivities of gold nanoparticles covalently functionalized with a thiol ligand containing both shikimoyl and guanidinyl functionalities (Au-SGSH). We show that Au-SGSH nanoparticles can deliver DNA vaccines to mouse DCs under in vivo conditions. Subcutaneous administration of near infrared (NIR) dye-labeled Au-SGSH showed significant accumulation of the NIR dye in the DCs of the nearby lymph nodes compared to that for the non-targeting NIR-labeled Au-GSH nanoconjugate containing only a covalently tethered guanidinyl group, not the shikimoyl-functionality. Under prophylactic settings, in vivo immunization (s.c.) with the Au-SGSH-pCMV-MART1 nanoplex induced a long-lasting (180 days) immune response against murine melanoma. Notably, mannose receptor-mediated in vivo DC-targeted immunization (s.c.) with the Au-SGSH-MART1 nanoplex significantly inhibited established melanoma growth and increased the overall survivability of melanoma-bearing mice under therapeutic settings. The Au-SGSH nanoparticles reported herein have potential use for in vivo DC-targeted genetic immunization against cancer and infectious diseases.

Graphical abstract: In vivo targeting of DNA vaccines to dendritic cells using functionalized gold nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
10 Okt. 2018
Accepted
07 Dec. 2018
First published
10 Dec. 2018

Biomater. Sci., 2019,7, 773-788

In vivo targeting of DNA vaccines to dendritic cells using functionalized gold nanoparticles

S. K. Gulla, B. R. Rao, G. Moku, S. Jinka, N. V. Nimmu, S. Khalid, C. R. Patra and A. Chaudhuri, Biomater. Sci., 2019, 7, 773 DOI: 10.1039/C8BM01272E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements