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Disease-specific protein corona sensor arrays may have disease
detection capacity

In research first started in 2014, Mahmoudi's group developed

a protein corona sensor array technology for early detection of
diseases. By combining the concepts of “disease-specific” protein
corona and sensor array technology, they created a platform for
the detection and identification of five distinct human cancers.
The protein corona sensor array technology demonstrated
promising outcomes for very early detection of cancers

using cohort plasma obtained from healthy people who were
diagnosed with lung, pancreas, and brain cancer several years
after plasma collection.
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The earlier any catastrophic disease (e.g., cancer) is diagnosed, the
more likely it can be treated, providing improved patient prognosis,
extended survival and better quality of life. In early 2014, we revealed
that various types of disease can substantially affect the composition/
profile of protein corona (i.e., a layer of biomolecules that forms at the
surface of nanoparticles upon their interactions with biological fluids).
Here, by combining the concepts of disease-specific protein corona
and sensor array technology we developed a platform with disease
detection capacity using blood plasma. Our sensor array consists of
three cross-reactive liposomes, with distinct lipid composition and
surface charge. Rather than detecting a specific biomarker, the sensor
array provides pattern recognition of the corona protein composition
adsorbed on the liposomes. As a feasibility study, sensor array validation
was performed using plasma samples obtained from patients diagnosed
with five different cancer types (i.e. lung cancer, glioblastoma, menin-
gioma, myeloma, and pancreatic cancer) and a control group of healthy
donors. Although no single corona composition is specific for any one
cancer type, overlapping but distinct patterns of the corona composi-
tion constitutes a unique “fingerprint” for each type of cancer (with a
high classification accuracy, i.e. 99.4%). To finally probe the capacity of
this sensor array for early detection of cancers, we used cohort plasma
obtained from healthy people who were subsequently diagnosed
several years after plasma collection with lung, brain, and pancreatic
cancers. Our results suggest that the disease-specific protein corona
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New concepts

In 2014, our group introduced the concept of “personalized”/“disease-
specific” protein corona. Here, by combining the concepts of ‘“‘disease-
specific” protein corona and sensor array technology, we have created a
platform for the detection and identification of diseases (five distinct
human cancers were used as a model disease) ex vivo. The protein corona
sensor array platform provides a library of corona compositions contain-
ing disease signatures. By analyzing the corona compositions of different
nanoparticles, using supervised classifiers, we created a unique protein
corona pattern which was the “fingerprint” of each type of cancer. Our
results revealed that although no single protein corona composition from
a single nanoparticle provides this “fingerprint” feature, we found that
the pattern of corona composition derived from the nanoparticle sensor
array provides a unique “fingerprint” for each type of cancer. To probe the
capacity of this platform for very early detection of cancers, we used cohort
plasma obtained from healthy people who were later diagnosed with lung,
pancreas, and brain cancers several years after plasma collection and the
outcomes revealed that the approach could identify and discriminate the
cancers. We expect that the protein corona sensor array may also prove useful
for the diagnosis of other devastating diseases.

sensor array will not only be instrumental in the screening, detection,
and identification of diseases, but may also help identify novel protein
pattern markers whose role in disease development and/or disease
biology has not been appreciated so far.
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It is now well accepted that nanoparticles in contact with
biological fluids are quickly surrounded by a selected group
of adsorbed proteins that form a corona’* whose composition
is strongly dependent on the physicochemical properties of the
nanoparticles themselves. The majority of these protein corona
studies were carried out using commercially available pooled
plasma (i.e. combined from multiple sources) derived from
donors with a wide range of health conditions and diseases.
Concurrently, the focus of these studies was to delineate the
adverse effect of the protein corona on nanoparticle function
which included implications in immunogenicity, mistargeting,
and unpredictable pharmacokinetics and biodistribution.>*
Taking an orthogonal view while building on these studies we have
introduced the concept of “personalized” and “disease-specific”
protein corona,”” i.e. we demonstrated that exposing nanoparticles
to human plasma, obtained from healthy subjects and patients
with various diseases, caused considerable differences in the
protein corona profile of nanoparticles and their corresponding
biological fates.*® The effect of the disease on the variation of
protein corona has been further validated by various groups.'®™*
The possibility to measure panels of specific and selective
biomarker proteins has the potential to revolutionize cancer
screening, detection and monitoring.'® Among emerging tools,
transition metal complexes have recently found use as lumi-
nescent probes for the detection of protein biomarkers."”
With respect to organic dyes, their long-standing phosphores-
cence allows them to be distinguished from an auto-fluorescent
background that is common in biological milieu. Moreover,
as phosphorescence of metal complexes changes with local
environment, they can act as chemosensors for a variety of
analytes. Other promising approaches for cancer detection and
staging are photoacoustic imaging®® and plasmonic biosensing.*!
The use of sensor arrays has proven very sensitive, specific,
robust, and versatile for the detection of a wide range of
chemical and biological compounds, where specificity is derived
from the pattern of response among an array of cross-reactive
sensors rather than from individual sensors for specific
(bio)molecules.>® The sensor array strategy has been used to
successfully detect and differentiate among diverse families of
analytes,?® various foods and beverages,”* pathogenic bacteria
and fungi,”>*® biomolecules,”” and even nanoparticles.*®
Here, we combined nanoparticle sensor-array technology, which
offers the advantage of improved accuracy while not being limited
to known disease biomarkers with protein corona and developed a
label-free protein corona sensor array for early detection of diseases
(here five different types of cancers were selected as a disease
model). The sensor array is composed of three different cross-
reactive liposomes with various lipid compositions: (i) anionic
liposomes made of DOPG (1,2-dioleoyl-sn-glycero-3-phospho-
(1-rac-glycerol)); (ii) cationic liposomes made of a binary mix-
ture of DOTAP (1,2-dioleoyl-3-trimethylammonium-propane)
and DOPE (dioleoylphosphatidylethanolamine); (iii) zwitterionic
liposomes made of DOPC (dioleoylphosphatidylcholine) and
cholesterol. Protein corona profiles were characterized by nano
liquid chromatography tandem mass spectrometry (nano-LC
MS/MS) after exposure to the plasma of patients diagnosed with
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five cancers: lung cancer, glioblastoma, meningioma, myeloma
and pancreatic cancer. Although no single protein corona
composition is specific for any one cancer type, we demonstrate
that changes in the corona composition pattern could provide a
unique “fingerprint” for each type of cancer. Finally, the nano-
particle sensor-array technology was validated using cohort
plasma obtained from healthy people who were subsequently
diagnosed with cancer several years after plasma collection.

Results and discussion

Hard corona profiles of the sensor array elements using plasma
derived from patients with cancers at early, intermediate, and
advanced stages

The composition of the protein corona that is observed on the
surface of sensor array elements (nanoparticles) is strongly
dependent on the physicochemical properties of those nano-
particles®® and, at the same time, the protein coronas can
strongly be affected by the unique type, concentration and
conformation of proteins and other biomolecules present in a
given patient plasma.>® As an initial proof-of-concept, the size
and charge of the corona-coated nanoparticles were probed via
dynamic light scattering (DLS/nanosight) and transmission
electron microscopy (TEM), after incubation with plasma derived
from patients with five different types of cancers (i.e., glioblastoma
multiforme, lung cancer, meningioma, multiple myeloma, and
pancreatic cancer); (see Tables S1, ESIT) and healthy individuals,
and the results demonstrated that the physicochemical properties
of the corona-coated nanoparticles varied across different types of
cancer (Fig. 1A and B).

Quantitative evaluation of the total protein adsorbed onto
the nanoparticles was performed via the BCA (bicinchoninic
acid) or NanoOrange assays, and the results confirmed signifi-
cant differences in the amounts of adsorbed proteins after
incubation in plasma derived from patients with various types
of cancers (Fig. 1B). The quantitative evaluation of the total
protein adsorbed on the surface of liposomes showed depen-
dency of the protein amount on the cancer type (Fig. 1B). The
protein corona composition at the surface of three liposomes
was evaluated via liquid chromatography-tandem mass spectro-
metry (LC-MS/MS) in which the abundance of ~1800 known
proteins was defined (the full raw and analyzed data are
provided in Excel files (1-3) in the ESIt). The contribution of
individual proteins and their categories (i.e., complement,
coagulation, tissue leakage, lipoproteins, acute phase, immuno-
globulins, and other plasma proteins) to the corona composition
was defined (Fig. 1C and ESL ¥ Fig. S1A-G). This result demon-
strated significant associations between the protein composition
and not only the cancer type but also the type of sensor elements
(i.e., type of liposome nanoparticles).

According to an extensive body of literature, there are strong
relationships between cancer development and variations in pro-
tein classes: complement,**>* coagulation,>*” tissue leakage,*®*°
lipoproteins,**™** acute phase,”*® and immunoglobulins.*>°
Therefore, the cross-reactive interactions of these protein categories

This journal is © The Royal Society of Chemistry 2019
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B Bare Liposomes
Size Intensity (nm) Pdi Zeta-potential (mV) TEM diameter (nm)
Cationic 153,50¢11.40 071004 46.50£2.30 1452168
Anionic 1464325 01340076 69.144.54 1413138
Neutral 172.9:2.8 0.05£0.001 -3.5¢1.2 164.915.8
(Corona Coated Liposomes
Cationic
Size Intensity (nm)] Pl Zeta potential (mV) Protein Assay (ug)

Healthy 232.9743.44 0.33:0.09 -38.1341.09 5.88:0.33
400 nm Fancress 240372420 0358002 28304132 684065
e 200471852 0362003 23274103 603070
Glioblastoma | 35 3047.87 0382005 30708144 681068
Meningioma | 23 272422 0342006 27.3720.45 6.4940.78
Mysioind 28431850 0431009 9394037 803077

Anionic
Healthy 178702282 0406:0052 42708131 7452086
Pancreas 205.2384.27 026240066 35602072 666046
Lung 192.27:4.87 0.280£0.028 -34.4310.75 6.87£0.51
200 nm Glioblastoma 203.50:6.70 0.4750.047 -38.5040.82 6.4620.35
198.60:4.30 03530031 32834300 6252069
Myeloma 169.50:4.80 026540040 22804329 857036

Neutral
Healthy 251.4047.60 03780038 2841234 33606
Pancreas 268.50£3.07 02700068 3134209 418023
Lung 28632215 027620074 3084126 438040
229.4741.87 0.29740.040 -36.0£0.94 3.0740.28
28971363 04130074 3254303 293032
joma 263.2721.82 03271002 68041 5.56:1.37
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Fig. 1 Protein corona sensor array profiles. (A) TEM images of liposomes with size distribution profiles. (B) Physicochemical properties of different
liposomes before and after interactions with human plasma from patients with different diseases. DLS and zeta-potential data on various liposomes
before interactions with human plasma and corona complexes (free from excess plasma) obtained following incubation with plasma from healthy
subjects and cancer patients (Pdi: polydispersity index from cumulative fitting). (C) Classification of the identified corona proteins from sensor array
elements according to their physiological functions in human plasma of healthy individuals and of patients having different types of cancers.
(Complement proteins on the surface of cationic liposomes are shown here as an example; other protein categories, including coagulation, tissue
leakage, lipoproteins, acute phase, immunoglobulins, and other plasma proteins, are shown in the ESIt Fig. SIA-G).

with nanoparticles may provide unique “fingerprints” for each type
of cancer, which would facilitate cancer identification and discri-
mination. Consequently, one would expect the protein corona
sensor array to cross-reactively adsorb a wide range of proteins
involved in cancer induction and development that could be used
for cancer identification and discrimination. Aside from disease
specific proteins, we have recently revealed that the variation of
disease related metabolomes in protein solution (e.g., plasma) can
substantially change the interaction site of proteins with nano-
particles and can therefore affect protein corona composition.>*>

This journal is © The Royal Society of Chemistry 2019

As cancer development has a capacity to substantially alter the
metabolomic composition of plasma,®>® the cancer extracted
plasma can substantially change the protein-nanoparticle inter-
action sites and therefore alter the protein corona composition.

Development of supervised classification analysis to identify
and discriminate among cancers using the protein corona
sensor array outcomes

To investigate whether protein corona fingerprints of various
sensor elements could be utilized as biosensors and form

Nanoscale Horiz., 2019, 4, 1063-1076 | 1065
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unique patterns for different diseases, we applied focused PLS-DA and the counter-propagation artificial neural network
classification approaches to proteomic data on three lipo- (CPANN) were then applied to the whole samples and selected
somes’ protein corona composition (cationic, anionic, and variables as linear and nonlinear supervised classification
neutral). Details of the methods are described in the Methods approaches, respectively. In agreement with the linear PLS-DA
section. A weighted-variable importance in the projection (VIP) results, the CPANN was also successful in precisely discriminating
score is introduced and applied for ranking of variables based the six cancers using the selected 69 variables (Fig. 3C and D).

on partial least squares discriminant analysis (PLS-DA) as a Next, to further verify and analyze the data, we decided to
linear projection method. Selection of the most relevant vari- take advantage of a nonlinear classification and mapping
ables (protein concentrations) in building the classification method. Visualizing the feature space can help us understand
model can be guided by a set of obtained ranked variables. the hidden structures and topological relationships among the
In this regard, top ranked variables were added to the model patterns. To reduce the dimensionality of the feature space
one by one, and the classification error and root mean square while preserving the topological relations of the data structure,
error of cross-validation (RMSECV) of the PLS-DA model were the CPANN (a supervised a variant of self-organizing maps,
monitored. We observed that the classification model has SOMs) was used to learn and predict the class membership
the minimum cross-validation error by using only the top 69 of the patterns, simultaneously producing a two-dimensional
variables (Fig. 2A). The new 69-dimensional variable space map of “neurons” (the processing units which compete and
was successfully used to discriminate 30 samples (with three cooperate to learn the pattern information) and provide
replicates) belonging to six classes using PLS-DA with a high valuable information (using a nonlinear approach) about the
classification accuracy (>99%) using 10-fold cross-validation data structure. Details of the CPANN are provided in the
(Fig. 2A). The classification parameters are given in the ESL,f Methods section. Different sizes for the CPANN map were
Table S2. The contribution of each single selected protein to the compared using 10-fold cross-validation; a map including 64
separation of each cancer group (VIP) is plotted on the y-axis (8 x 8) neurons was chosen due to the minimum classification
(i.e., the VIP value of each variable corresponding to each class) and error (ESL Fig. S2C). Moreover, the topological structure of
the x-axis (i.e., the selected variable’s number) to provide a visual ~data in the high-dimensional space is reflected in the assigna-
representation of the relative specificity of the findings (Fig. 2B-F). tion map produced by the CPANN (Fig. 3C). Considering the
The proteins with higher VIP scores could be considered the most similarity of the neurons to the input vectors, the map can be
informative or diagnostic set to discriminate each disease from partitioned into six distinct zones related to different type of

controls and from among all cancer categories. cancers and control samples. Samples with the same class label
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Fig. 2 Predictor discovery and contribution from each individual predictor to separation of each class by PLS discrimination analysis. (A) Predictor
exploration by weighted VIP scores was performed by adding the ranked variables to the PLS-DA model one by one and calculating the classification
error for internal cross-validation (10-fold). Inset: RMSECV was performed by adding the ranked variables to the PLS-DA model one by one and plotted
against a number of variables. Decreasing the classification error and RMSECV led to the discovery of a minimal set of 69 predictors with the highest
possible importance for separating each class from the others. (B—F) The contribution of each individual marker to separation of each class based on the
PLS discrimination analysis. VIP plot ranking markers of 69 selected variables for their contribution to separation of each class based on the proposed
PLS-DA model. VIP score >1 indicates important protein leading to good prediction of class membership, whereas variables with VIP scores <1 indicate
unimportant proteins for each class.
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Fig. 3 Identification and discrimination of cancers using protein corona sensor arrays. (A and B) PLS-DA plots showing the separation of different cancerous
samples from each other and from controls (n = 30 samples). (A) PLS score-plot obtained using the PLS-toolbox, projecting the objects into the subspace
created by the 1st, 2nd, and 3rd latent variables of the model. (B) Objects displayed where the 4th and 5th latent variables of the model are shown. As can be
seen, meningioma and glioblastoma cases were not separated in three dimensions appropriately, but they can be separated in the fourth and fifth dimensions of
the PLS model. (C and D) Assignation map obtained by using the CPANN with all variables and selected variables. (C) Assignation map obtained by the training of
a CPANN network (8 x 8 neurons) using the whole data set (1823 variables). The mapping quality is not good and there are conflicts of different types of cancer
in terms of mapping. (D) Assignation map attained by the training of a CPANN network (8 x 8 neurons) using 69 variables. High-dimensional input vectors
(samples) are mapped on a two-dimensional network of neurons, preserving similarity and topology. Colors indicate the similarity of a neuron to a specific type
of input vector (class type). This map also demonstrates the importance of the predictor selection step and the effect of deletion of non-informative and
irrelevant predictors on the model quality. (E and F) 51 proteins identified as capable of distinguishing among the six groups are presented in a ‘Heat Map’
generated using an unsupervised cluster algorithm (agglomerative HCA with furthest neighbor linkage). Visual inspection of both the dendrogram (E) and the
heat map (F), based on the raw data of 69 important markers, demonstrates cancer-specific protein corona signature and clear clustering of six groups of
samples (five groups of cancerous samples plus normal samples) and also expected similarities among five patients from each group. The heat map also indicates
substantial differences in the patterns of variables (markers) of different cancers (each column represents a patient, and each row represents a protein). Higher
and lower protein levels are indicated in red and green, respectively; the ID of 69 proteins in the heat map (right y-axis) variables, from top to bottom, are: 7, 1, 68,
8,47, 36, 55, 37, 60, 48, 43, 50, 28, 51, 38, 3, 42, 58, 63, 46, 53, 31, 54, 17, 14, 44, 24, 21, 39, 40, 52, 5, 27, 11, 69, 65, 56, 57, 32, 16, 15, 13, 10, 26, 22, 62, 49, 6, 2, 41,
12, 45, 67, 59, 29, 4, 19, 64, 20, 33, 66, 61, 30, 23, 18, 35, 34, 25, and 9 (the protein names are provided in Table 1).
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are mapped onto nearby or the same neurons, which means
that the selected variables provide valuable information for
discriminating the samples in the feature space. The relative
position and orientation of six zones on the map contribute
qualitative information on the similarities between types of
cancers. To represent the effect of variable selection on
the quality of mapping, another CPANN was trained using
all 1823 variables, and the resulting map shows that the
selected biomarkers (variables) play an important role in
discriminating among cancer types and classifying them properly
(Fig. 3C and D).

On the basis of the obtained results, both linear and nonlinear
models showed high accuracy, deduced from their acceptable
specificity, sensitivity, and classification error values. Consistent
with these findings, unsupervised clustering (HCA) based on the
raw data of 69 markers was able to strongly distinguish various
types of cancerous and control samples (Fig. 3E and F). As can be
seen in Fig. 3, there is close similarity between the glioblastoma
and meningioma groups of samples, implying difficulty in dis-
crimination, most probably related to similar plasma proteomics
patterns in these two brain cancers. These results reflect the fact
that the plasma concentrations of many proteins in the corona
differ considerably, not only among subjects with different types
of cancers, but also among healthy individuals.

To illustrate the sensor array’s capability for pattern recog-
nition, a set of analyses was performed on the data matrix
(all variables) obtained from individual nanoparticles. Impor-
tantly, the pattern of cancer-specific fingerprints could not be
extracted solely from each class of liposome nanoparticle’s
PCF (ESI,t Fig. S4). As shown in ESLt Fig. S4 (ESIt), no one
class of liposomes could discriminate all 6 groups of samples
as well as the composite response of the full array. The
classification error using data obtained individually from
anionic, cationic and neutral liposomes is 54%, 24% and
10%, respectively, whereas the combined pattern gave a classi-
fication error of only 3%. This substantial reduction in the
classification error of the combined pattern is due to the
power of the sensory part of the protein corona which provides
more proteomics data (even for one specific proteins) for the
classifier. Using the nano-sensor array with liposomes that
have different chemistries (cationic, anionic, and neutral)
combined with pattern-recognition techniques correctly dis-
criminates not only cancerous from control samples, but also
each type of cancer under consideration from the others.
Notably, 62 proteins out of 69 important variables are unique,
because some of the selected proteins are presented in the
protein corona profiles of more than one liposome, confirm-
ing the key role of those same protein variations [e.g., FCN3
(Ficolin 3)] in different sensor elements. Another specific
feature that is presented by using sensor array technology
can substantially increase the data dimension of the proteo-
mics outcomes compared to the human plasma proteins. In
other words, each protein provides one concentration in
human plasma while that specific protein may provide several
different concentrations for protein corona profiles of various
nanoparticles.
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Identification of proteins with crucial roles in cancer detection
and discrimination as promising biomarkers for specific types
of cancers

The use of biomarkers both before cancer diagnosis (in risk
assessment and screening/early detection) and after diagnosis
(in monitoring therapy, selecting additional therapy, and
detecting recurrence) would yield substantial therapeutic and
health-economic benefits.>® To understand the potential biolo-
gical relevance of the 69 selected proteins that discriminate
cancerous samples, we manually searched through previously
published reports in PubMed on protein biomarkers of specific
types of cancers that are upregulated or downregulated according
to different disease stages. The resulting data were compared with
the selected proteins in the model to identify matched markers
and determine the biological relevance of the proposed model.
Interestingly, we noted significant numbers of biomarkers specific
to five investigated groups of cancers among the selected
predictors that had been reported as specific cancer biomarkers
(Table 1).

After the training of the CPANN, the importance and rele-
vancy of the variables with the produced map can be investi-
gated. A correlation analysis was also performed between the
assignation map of the CPANN and 69 weight layers (weight
maps) (Fig. 4). Therefore, six correlation coefficients (CCs) can
be obtained for each biomarker and these values can show the
relevance of that biomarker with the control and cancer classes.
The value of a correlation coefficient ranges between —1 and
1 for negative and positive linear correlations respectively. The
CC values near to 1 or —1 represent strong correlation and
relevancy and a CC value near zero means that there is a weak
or non significant correlation between the marker and cancer
type. Considering the CC values (ESLf Table S3), several
biomarkers, such as FCN3, CO4A, CO4B, CO7, and C4BPA,
can easily be distinguished according to the strong correlation
between pancreatic cancer zones on the assignation map and also
reported as pancreatic cancer biomarkers in the literature.®***
Moreover, for lung cancer APOH, CO6, CO8A, CO8G, KNG1, and
VINC have significant correlation with the CPANN assignation
map as specific biomarkers.®

The high specificity of the selected markers for discriminating
among the five groups of cancers, which derives from our protein
corona sensor array approach, demonstrates an acceptable level of
correlation with the work now under way in the complex cancer
proteomics space; therefore, this strategy not only provides a basis
for cancer prediction but also translates that promise into reality.
It is noteworthy that the discrimination between different cancer
groups occurs as a result of the pattern of response of several
predictors (and not individual biomarkers) that change simulta-
neously in a systematic manner, forming patterns unique to each
specific type of cancer. On the basis of this evidence, the most
informative predictors selected by the proposed model that have
not already been reported as cancer-specific biomarkers may have
great potential as new diagnosis biomarker candidates. It is note-
worthy that the protein corona layer provides different protein
concentration compared to the plasma proteins. This means that
increasing concentration of cancer specific biomarkers in plasma
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Table1 Protein names and biomarkers used for analysis. (A) Protein name
and ID of 69 selected variables are listed. Some of the proteins were
present in the protein corona of more than one liposome (DOPG, DOTAP
and CHOL are denoted by color: green, red, and blue, respectively).
(B) Disease-specific biomarkers covered as significant variables by using
the proposed models. (C) 8 important markers for cohort samples (the two
common variables are colored by red)

(A) The protein name and ID of 69 selected variables
Variable ID. Protein Variable ID. Protein name
(PLS model) name (PLS model)

1 PLMN 33 TRFE
2,19, 51 FCN3 34 APOE
3 BIN2 35 IGHG1
4 VTNC 36 FINC
5 ITIH1 37 C4BPA
6 KNG1 38 IGKC
7 C09 39 GELS
8 C1S 40 VTDB
9 RET4 41 K1C16
10, 47 C1R 42 IGHG3
11 CO6 43 LAC2
12 IC1 44 HORN
13 APOH 45 IGHG2
14 co7 46 HRG
15 CO8A 48 SAA4
16, 49 PROP 50 K1C14
17 GRP78 52 HPTR
18, 61 PHLD 53 KV118
20 FHR5 54 CO4A
21 C0O8G 55 ZPI
22 COF1 56 CXCL7
23, 62 CBPN 57 CRP
24 FGL1 58 IGHG4
25 CBPB2 59 SBSN
26 COL10 60 ITAM
27 KRT86 63 ITB2
28, 67 CD59 64 PGK1
29 KAIN 65 COL11
30 ALBU 66 EMILA1
31 CO4B 68 QCR2
32 A2MG 69 HV209
(B) Disease specific biomarkers
Cancer type Protein name
Glioblastoma PLMN, VTNC, ITIH1, CO7, FHR5, CBPN,
ALBU, C4BPA, CO4A, CRP, APOE, CXCL7
Meningioma FCN3, RET4, CBPN
Pancreas KNGH1, IC1, CBPB2, TRFE, APOE, GELS,
HPTR, CXCL7, PGK1, APOH, FCN3, VTNC,
ALBU, CO4A, CO4B, CO9, C4BPA
Lung CO9, SAA4, CRP, GELS
Myeloma ALBU
(C) 8 important markers for cohort samples
GPIX, STOM, LAC3, FLNA, FA5, APOH, LAC3, LAC2

may not lead to higher participation of that specific protein in the
corona composition. However, variation of these cancer specific
proteins together with other metabolomic variations may sub-
stantially change the interactions of other proteins with the
surface of nanoparticles which results in the formation of dis-
ease-specific protein corona. To define the role of corona specific
proteins in cancer development, the variation and functionality
of these promising candidates together with their associated
metabolomic pathways in cancer patients should be carefully
monitored. By focusing on the unique patterns derived from huge
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numbers of subjects via a set of informative predictors, researchers
should be able to predict cancers at different stages more accurately
which is not possible using current methods.

Cohort data analysis

To probe the capacity of this protein corona sensor array tech-
nology for early detection of cancers, we used cohort plasma
from healthy people who were subsequently diagnosed several
years after plasma collection with one of the five types of
cancers. Using the cohort samples, we evaluated whether our
proposed models, both linear and nonlinear, with 69 selected
predictors could be utilized for cancer prediction. The protein
corona profiles of the cohort samples are presented in the ESIT{
(the full raw and analyzed data are provided in four Excel files
(4-6) in the ESI}). There were statistically significant differ-
ences between protein corona profiles of the cohort samples
and previous fresh samples in terms of protein abundance
levels and protein types when the proteomics profiles of these
two groups of samples were compared. Since sample collection
of the cohort samples was at the time of screening of healthy
individuals, they were stored frozen for at least ten years. The
long-term storage time affects the abundance levels of several
proteins, causing decreases or increases in protein concentrations
such as coagulation factors, as reported by several groups.**®
Therefore, we attribute the lack of significant correlation of the
cohort results with previous fresh samples that have not been
stored for a long time to alteration in protein abundance due to
the aging of the samples.

To allow for unbiased classification and prediction of cohort
samples, we used two approaches: first, the discriminatory
power of the 69 important variables was checked for the cohort
samples. Because 15 variables (proteins) out of the 69 markers
were absent from the proteomics profile of our protein corona
sensor array of cohort samples, classification was performed
based on the 54 existing markers and the amount of 15 absent
variables in the cohort data matrix was considered zero. Despite
such defects and missing markers in the cohort data matrix,
both linear and nonlinear models provided proper separation
for three groups of cohort samples with reasonable statistics
(38% classification error in 10-fold cross validation) (Fig. 5A
and C). Second, the cohort samples were classified separately,
i.e., not compared with the library of the protein corona sensor
array for previous fresh samples. In this regard, the informative
markers were selected based on the cohort protein corona
profiles in a similar manner as mentioned earlier, and then
linear and nonlinear classification approaches were evaluated.
Interestingly, the cohort samples could be discriminated by
employing both linear and nonlinear classification models
using only 8 markers with excellent statistics (the classification
error minimized to zero using 8 variables). All detailed results
are provided in the ESI,f Table S2, and Fig. 5B and D. As shown
in Fig. 5, the cohort samples were significantly discriminated in
the score plot of both PLS-DA and the CPANN map.

In summary, we have developed a disease-specific protein
corona sensor array platform for disease detection using plasma
samples. Our sensor array differs from other known sensor arrays
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Fig. 4 Data analysis using the CPANN (counter propagation artificial neural network). (A) Schematic representation of unfold