Issue 46, 2020

Improvement of d–d interactions in density functional tight binding for transition metal ions with a ligand field model: assessment of a DFTB3+U model on nickel coordination compounds

Abstract

To improve the description of interactions among the localized d, f electrons in transition metals, we have introduced a ligand-field motivated contribution into the Density Functional Tight Binding (DFTB) model. Referred to as DFTB3+U, the approach treats the d, f electron repulsions with rotationally invariant orbital–orbital interactions and a Hartree–Fock model; this represents a major conceptual improvement over the original DFTB3 approach, which treats the d, f-shell interactions in a highly averaged fashion without orbital level of description. The DFTB3+U approach is tested using a series of nickel compounds that feature Ni(II) and Ni(III) oxidation states. By using parameters developed with the original DFTB3 Hamiltonian and empirical +U parameters (F0/2/4 Slater integrals), we observe that the DFTB3+U model indeed provides substantial improvements over the original DFTB3 model for a number of properties of the nickel compounds, including the population and spin polarization of the d-shell, nature of the frontier orbitals, ligand field splitting and the energy different between low and high spin states at OPBE optimized structures. This proof-of-concept study suggests that with self-consistent parameterization of the electronic and +U parameters, the DFTB3+U model can develop into a promising model that can be used to efficiently study reactive events involving transition metals ion condensed phase systems. The methodology can be integrated with other approximate QM methods as well, such as the extended tight binding (xTB) approach.

Graphical abstract: Improvement of d–d interactions in density functional tight binding for transition metal ions with a ligand field model: assessment of a DFTB3+U model on nickel coordination compounds

Supplementary files

Article information

Article type
Paper
Submitted
06 Sept. 2020
Accepted
16 Nov. 2020
First published
16 Nov. 2020

Phys. Chem. Chem. Phys., 2020,22, 27084-27095

Improvement of d–d interactions in density functional tight binding for transition metal ions with a ligand field model: assessment of a DFTB3+U model on nickel coordination compounds

S. Stepanovic, R. Lai, M. Elstner, M. Gruden, P. Garcia-Fernandez and Q. Cui, Phys. Chem. Chem. Phys., 2020, 22, 27084 DOI: 10.1039/D0CP04694A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements