Issue 6, 2020

Durability of submerged hydrophobic surfaces

Abstract

Hydrophobic and superhydrophobic surfaces have gained wide popularity due to their potential in various areas such as in self-cleaning and anti-fouling materials, drag reduction and microfluidics. However, for all practical applications, the long term durability of these surfaces is extremely important, yet not often investigated. Of particular interest is the long term durability of soft hydrophobic surfaces that remain submerged underwater for a prolonged duration. In this article, we explore how the chemical durability of flat and patterned crosslinked PDMS surfaces (polydimethylsiloxane, a preferred material for microfabrication) change as a function of time when submerged in acidic, basic and neutral media for different durations over a prolonged period of time. Based on contact angle measurements, atomic force microscopy, confocal microscopy and SEM analysis of the surfaces, we checked if there is any change in the morphology of the surface due to deposition or etching. We created a biomimetic positive replica of a lotus leaf that exhibited super-hydrophobicity and Cassie state of wetting with a static water contact angle (θ) > 150°, and compared the degradation with a negative replica of lotus leaf (θ ∼ 127°), a grating patterned surface that exhibited Wenzel state of wetting (θ ∼ 110°) and a flat crosslinked PDMS surface (θ ∼ 105°). The positive replica maintained reasonable hydrophobicity (θ > 90°) for up to a month, but lost its super-hydrophobic property. The surface hydrophobicity degraded the most in the case of basic solution due to deposition.

Graphical abstract: Durability of submerged hydrophobic surfaces

Supplementary files

Article information

Article type
Paper
Submitted
27 Sept. 2019
Accepted
23 Dec. 2019
First published
23 Dec. 2019

Soft Matter, 2020,16, 1692-1701

Durability of submerged hydrophobic surfaces

S. M. Varughese and N. Bhandaru, Soft Matter, 2020, 16, 1692 DOI: 10.1039/C9SM01942A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements