Issue 33, 2020

Nanoclay-based drug delivery systems and their therapeutic potentials

Abstract

Safe, therapeutically effective, and patient-compliant drug delivery systems are needed to design novel tools and strategies to combat the deadliest of diseases such as cancer, SARS, H7N9 avian influenza, and dengue infection. The major challenges in drug delivery are cytotoxicity, poor biodistribution, insufficient functionality, ineffective drug incorporation in delivery devices, and subsequent drug release. Clay minerals are a class of nanolayered silicates that have good biocompatibility, high specific surface area, chemical inertness, colloid, and thixotropy, and are attractive practical and potential nanomaterials in medicine. These properties enable the usage of nanoclays as drug carriers for the delivery of antibiotics, antihypertensive drugs, anti-psychotic, and anticancer drugs. The review examines the latest advances in nanoclay-based drug delivery systems and related applications in gene therapy and tissue engineering. Clay minerals, particularly montmorillonite, kaolinite, and halloysite are used to delay and/or target drug release or even improve drug dissolution due to their surface charge. Chemical modification of clay minerals such as intercalation of ions into the interlayer space of clay minerals or surface modification of clay minerals is a strategy to tune the properties of nanoclays for the loading and release of a drug. The modified nanoclay can take up drugs by encapsulation, immobilization, ion exchange reaction, or electrostatic interactions. Controlled drug release from the drug–clay originates from the incorporation and interactions between the drug and inorganic layers, including electrostatic interactions and hydrogen bonding. Montmorillonite has proven non-toxic through hematological, biochemical, and histopathological analyses in rat. Montmorillonite can also act as a potent detoxifier. Halloysite nanotubes can bind synthetic and biological components such as chitosan, gelatin, and alginate innate nanocarriers for the improved loading and controlled release of drugs, proteins, and DNA. The peculiar properties of clay nanoparticles lead to promising applications in drug delivery, gene delivery, tissue engineering, cancer and stem cell isolation, and bioimaging.

Graphical abstract: Nanoclay-based drug delivery systems and their therapeutic potentials

Article information

Article type
Review Article
Submitted
20 Apr. 2020
Accepted
30 Jūn. 2020
First published
01 Jūl. 2020

J. Mater. Chem. B, 2020,8, 7335-7351

Nanoclay-based drug delivery systems and their therapeutic potentials

N. Khatoon, M. Q. Chu and C. H. Zhou, J. Mater. Chem. B, 2020, 8, 7335 DOI: 10.1039/D0TB01031F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements