Issue 22, 2021

Recent advances in cell membrane coated metal–organic frameworks (MOFs) for tumor therapy

Abstract

In improving the tumor-targeting ability of metal–organic frameworks (MOFs) for tumor therapy and avoiding the clearance as well as capture by the immune system, there are still several challenges, which limit the development and bio-applications of MOFs. To overcome these challenges, various targeted modification strategies have been proposed. Amongst all the strategies, a promising cell membrane coating method has been explored and utilized for the syntheses of new cell membrane biomimetic MOFs (CMMs). Through such coating, various source cell membranes (e.g., red blood cell, immune cell, cancer cell, platelet, and fusion cell membranes) can be endowed with excellent properties such as long blood circulation, immune escape, and targeting ability. In the presented perspective, the synthetic method, characterization, and research progress in tumor therapy based on CMMs have been summarized. This is because, like many other technologies, the cell membrane coating technology also has several challenges to overcome. Hence, addressing and overcoming such challenges will promote and extend the bio-applications of MOFs which in the future may become a prospective carrier for cancer nano-medicine. Finally, the prospects and challenges of utilizing CMMs for tumor therapy have been discussed.

Graphical abstract: Recent advances in cell membrane coated metal–organic frameworks (MOFs) for tumor therapy

Associated articles

Article information

Article type
Review Article
Submitted
03 Marts 2021
Accepted
13 Apr. 2021
First published
20 Apr. 2021

J. Mater. Chem. B, 2021,9, 4459-4474

Recent advances in cell membrane coated metal–organic frameworks (MOFs) for tumor therapy

W. Liu, Q. Yan, C. Xia, X. Wang, A. Kumar, Y. Wang, Y. Liu, Y. Pan and J. Liu, J. Mater. Chem. B, 2021, 9, 4459 DOI: 10.1039/D1TB00453K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements