Issue 5, 2022

Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells

Abstract

Carrier extraction in mixed tin–lead perovskite solar cells is improved by modifying the top and bottom perovskite surfaces with ethylenediammonium diiodide and glycine hydrochloride, respectively. Trap densities in perovskite layers are reduced as a result of surface passivation effects and an increase in film crystallinity. In addition, the oriented aggregation of the ethylenediammonium and glycinium cations at the charge collection interfaces results in the formation of surface dipoles, which facilitate charge extraction. As a result, the treated mixed tin–lead perovskite solar cells showed improved performance, with a fill factor of 0.82 and a power conversion efficiency of up to 23.6%. The unencapsulated device also shows improved stability under AM1.5 G, retaining over 80% of the initial efficiency after 200 h continuous operation in an inert atmosphere. Our strategy is also successfully applied to centimeter-scale devices, with efficiencies of up to 21.0%.

Graphical abstract: Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
25 Janv. 2022
Accepted
31 Marts 2022
First published
12 Apr. 2022

Energy Environ. Sci., 2022,15, 2096-2107

Author version available

Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells

S. Hu, K. Otsuka, R. Murdey, T. Nakamura, M. A. Truong, T. Yamada, T. Handa, K. Matsuda, K. Nakano, A. Sato, K. Marumoto, K. Tajima, Y. Kanemitsu and A. Wakamiya, Energy Environ. Sci., 2022, 15, 2096 DOI: 10.1039/D2EE00288D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements