Issue 2, 2022

Volumeless reagent delivery: a liquid handling method for adding reagents to microscale droplets without increasing volume

Abstract

The addition of reagents for assays in digital microfluidic (DMF) systems is traditionally done by merging of droplets containing different analytes or reagents in solution. However, this process significantly increases droplet volume after each step, resulting in dilution of the analyte and reagents. Here, we report a new technique for performing reagent additions to aqueous droplets without significantly increasing the droplet's volume: volume-less reagent delivery (VRD). VRD is enabled by a physical phenomenon we call “exclusive liquid repellency” (ELR), which describes an aqueous/oil/solid 3-phase system where the aqueous phase can be fully repelled from a solid phase (contact angle ∼180°). When performing VRD, a reagent of interest in solution is deposited onto the ELR solid surface and allowed to dry. The ELR surface containing the dried reagent is then immersed under oil, followed by introduction of an aqueous droplet. By dragging the aqueous droplet over the spot of dried reagent using paramagnetic particles or via a physical sliding wall, the droplet can then recover and reconstitute the reagent with negligible increase in its total volume, returning the ELR surface to its initial liquid repellent state in the process. We demonstrate that VRD can be performed across a wide range of reagent types including sugars, proteins (antibodies), nucleic acids (DNA), antibiotics, and even complex enzyme/substrate/buffer “kit” mixtures. We believe VRD is a flexible and powerful technique which can further the development of self-contained, multi-step assays in DMF and other microfluidic systems.

Graphical abstract: Volumeless reagent delivery: a liquid handling method for adding reagents to microscale droplets without increasing volume

Supplementary files

Article information

Article type
Paper
Submitted
07 Okt. 2021
Accepted
05 Dec. 2021
First published
10 Dec. 2021

Lab Chip, 2022,22, 286-295

Volumeless reagent delivery: a liquid handling method for adding reagents to microscale droplets without increasing volume

D. S. Juang, J. M. Lang and D. J. Beebe, Lab Chip, 2022, 22, 286 DOI: 10.1039/D1LC00906K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements