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olecules conditional on receptor
binding sites with deep generative models†

Matthew Ragoza, *a Tomohide Masudab and David Ryan Koesc

The goal of structure-based drug discovery is to find small molecules that bind to a given target protein.

Deep learning has been used to generate drug-like molecules with certain cheminformatic properties,

but has not yet been applied to generating 3D molecules predicted to bind to proteins by sampling the

conditional distribution of protein–ligand binding interactions. In this work, we describe for the first time

a deep learning system for generating 3D molecular structures conditioned on a receptor binding site.

We approach the problem using a conditional variational autoencoder trained on an atomic density grid

representation of cross-docked protein–ligand structures. We apply atom fitting and bond inference

procedures to construct valid molecular conformations from generated atomic densities. We evaluate

the properties of the generated molecules and demonstrate that they change significantly when

conditioned on mutated receptors. We also explore the latent space learned by our generative model

using sampling and interpolation techniques. This work opens the door for end-to-end prediction of

stable bioactive molecules from protein structures with deep learning.
1. Introduction

Chemical space is enormous, but the subset of molecules that
have desirable biological activity is much smaller. Drug
discovery typically requires searching through this space for
molecules that bind to a specic target, such as a protein
implicated in a disease. Thus the search for new drugs involves
an alternating procedure of (1) sampling compounds from
promising regions of chemical space and (2) screening them for
activity against the biological target. The difficulty of searching
chemical space for novel therapeutics has lead to the develop-
ment of computational methods that sample and screen
compounds in silico before they are validated experimentally. To
reduce the time and cost of drug development, there is growing
recognition of the need for new algorithms for sampling
compounds with a high chance of success and predicting their
biological activity through virtual screening.

Given that the structure of biomolecules determines their
function, leveraging the three-dimensional (3D) structure of the
target when screening drug candidates has the potential to
improve prediction quality.1 The increasing availability of
structural data in public repositories like the Protein Data Bank2
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has led to the widespread adoption of machine learning in
structure-based drug discovery. Machine learning allows
complex nonlinear models of protein–ligand binding to be
learned automatically from structural features. Furthermore,
the impressive performance of deep learning in computer
vision and natural language processing has inspired
researchers to apply these methods to biological structures as
well. Deep neural networks can learn highly abstract functions
from structural data withminimal featurization. This is recently
exemplied by AlphaFold, a deep learning model capable of
predicting the 3D structures of proteins with high accuracy
directly from their amino acid sequence and evolutionary
information.3 Despite the utility of deep learning models, it is
crucial that they are designed with the appropriate inductive
biases and assessed with sufficient cross-validation to avoid
overtting.

Deep learning was rst introduced in structure-based drug
discovery for scoring the 3D interactions between target
proteins (receptors) and small molecules that could potentially
bind to them (ligands). Protein–ligand scoring can be formu-
lated as three-dimensional image recognition by training con-
volutional neural networks (CNNs) on docked protein–ligand
poses represented as atomic density grids. This approach has
been successfully applied to binding discrimination,4,5 pose
ranking,5 and affinity prediction.6,7 Furthermore, grid-based
CNN scoring functions have been integrated into ligand pose
optimization8 for molecular docking,9 where they outperform
traditional scoring functions. Neural networks have also been
applied to binding affinity prediction10 and quantum energy
estimation11 using atomic coordinate-based representations.
Chem. Sci., 2022, 13, 2701–2713 | 2701
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Table 1 Atom typing scheme. The atomic properties and associated
ranges of values that were represented in our atom type vectors

Atomic property Value range Num. values

Ligand element B, C, N, O, F, P, S, Cl, Br, I, Fe 11
Receptor element C, N, O, Na, Mg, P, S, Cl, K, Ca, Zn 11
Aromatic False, true 2
H-bond acceptor True 1
H-bond donor True 1
Formal charge �1, 0, 1 3
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Deep learning is now widely regarded as the state-of-the-art in
virtual screening.

In contrast, it has only recently become viable to use deep
learning to sample molecules with drug-like properties prior to
virtual screening. Initial efforts to train deep generative models
on molecules12–14 took cues from language modeling by repre-
sentingmolecules with the SMILES string syntax.15 Improvements
on these approaches used reinforcement learning to guide the
generation process towards desired cheminformatic criteria.16,17

Other work included grammatical constraints that alleviate the
tendency for generative models to produce invalid SMILES
strings.18,19 Despite these improvements, SMILES strings are not
permutation invariant, so they do not capture the notion of
chemical similarity. They also lack conformational information,
which limits their applicability to structure-based drug discovery.

Molecular graphs have been used as a more natural repre-
sentation of molecules than SMILES strings. Graphs can be
provided as input to message-passing neural networks20 and
can be generated as output using fully-connected layers.21

However, assuming that generated bonds are independent can
result in invalid valences. Solutions include producing mole-
cules as trees of chemically valid substructures22 or hard-coding
valency constraints into the generative process.23,24 Another
concern is that comparing molecules in the loss function
requires a graph matching algorithm, which is computationally
expensive unless approximations are made.21,25 Generative
adversarial networks (GANs) avoid this by only comparing
molecules implicitly, but they are notoriously difficult to
train.26,27 The generation of molecular graphs with deep neural
networks can also be biased towards cheminformatic objectives
using reinforcement learning.25–27

Most work on deep generative models of molecules have
used 2D representations, but contemporary methods can also
generate 3D conformations. Early efforts generated different
conformers of a single chemical formula using autoregressive
models, which output atoms sequentially.28 These have been
extended for generating conformers with arbitrary chemical
composition,29 simultaneously producing the coordinates and
molecular graph,24,30 and generating linker atoms that connect
fragments into valid 3D molecules.31 Autoregressive models can
be made invariant to rotations and translations by modeling
distributions over interatomic distances instead of coordinates.
However, they require selecting a canonical atomic ordering
due to lack of permutation invariance. On the other hand, non-
autoregressive approaches generate distance matrices all at
once,32 and have been extended to generating conformers
conditioned on a molecular graph.33,34 One challenge of non-
autoregressive models is that generating distance matrices
requires enforcing the triangle inequality. Another drawback is
that the Hungarian algorithm, which has cubic time complexity
in the number of atoms, must be applied to compare distance
matrices in a permutation agnostic manner.

Atomic density grids can also be used as a 3D representation
of molecules for generative modeling. Unlike distance matrices,
grids are coordinate frame-dependent. However, they are
permutation invariant and can be compared without expensive
matching algorithms. Density grids also provide holistic shape
2702 | Chem. Sci., 2022, 13, 2701–2713
information that is not easily accessible from atomistic repre-
sentations, and is arguably of equal importance for protein–
ligand binding as pairwise interactions. The main obstacle to
generativemodeling with atomic density grids is converting them
into discrete molecules. Past work has used Wiener deconvolu-
tion to approximate the inverse of the density kernel,35 but this
does not lead to an unambiguous set of atoms and bonds.
Another group trained an auxiliary captioning network to output
SMILES strings based on density grids,36 but this relinquishes the
3D structure generated by the model. Iterative atom tting and
bond inference is the only approach, to our knowledge, that
produces 3D molecular structures from atomic density grids.37

The use of protein structure to generate molecules with deep
learning an under-explored research area. Preliminary work has
generated SMILES strings based on receptor binding site
information represented as atomic density grids38 or Coulomb
matrices.39 Others used reinforcement learning to guide the
sampling of 3D ligands towards high affinity for a target
protein30 or conditioned the generation of molecular graphs on
density grids of 3D pharmacophores.40 However, generating 3D
molecular structures directly from protein binding pockets
remains an unsolved challenge.41 To address this, we make the
following contributions:

(1) The rst demonstration of 3D molecular structure
generation with receptor-conditional deep generative models.

(2) Evaluation of the effect on generated molecules of
conditioning the generative model on mutated receptors.

(3) Exploration of the latent space learned by the generative
model through sampling and interpolation.

2. Methods
2.1. Property-based atom typing

An overview of our methods can be viewed in Fig. 1. First, we
assign atom types to molecules using a set of Np atomic property
functions p and value ranges for those properties v, which are
listed in Table 1. For a given atom a, the atom type vector t˛R

NT

is created by concatenating Np atomic property vectors p
through the following:

tðaÞ ¼
h
p
�
a; ðp; vÞi

�
;.; p

�
a; ðp; vÞNp

�i
pða; ðp; vÞÞi ¼ 1ðpðaÞ ¼ viÞ

(1)

The atomic properties we used were element, aromaticity, H-
bond donor and acceptor status, and formal charge. Different
element ranges were represented for receptor atoms and ligand
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Overview of generative modeling pipeline. First, a docked
protein–ligand complex is converted to an atomic density represen-
tation through atom typing and gridding operations. Density grids are
then provided as input to a conditional variational autoencoder (CVAE).
The CVAE input branch encodes the full complex density, while its
conditional branch encodes only the receptor density. The complex
density is mapped to a probabilistic latent space, which is then
sampled as a latent vector z � N(m, s). This is combined with the
conditional vector c output by the conditional encoder, and together
they are provided to the decoder. The decoder generates an output
ligand density that is converted into the final 3D molecular structure
through atom fitting and bond adding.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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atoms, but the value ranges for all other properties were the
same. The process we used to construct value ranges for prop-
erties and compare different type schemes is described in the
supplement.
2.2. Atomic density grids

Aer assigning atom type vectors, we convert molecules to an
atomic density grid format. Atoms are each represented as
continuous densities with a truncated Gaussian shape. The
density value of an atom at a grid point is dened by a kernel
function f: R � R / R that takes as input the distance
d between the atom coordinate and the grid point and the
atomic radius r:

f ðd; rÞ ¼

8>><
>>: e

�2ðd
r
Þ2

d# 1:5r

0 d. 1:5r

(2)

The radius was xed at r¼ 1.0 for all atoms in this work. Grid
values are computed by summing the density kernel of each
atom at each point on a 3D grid, multiplied by the value of the
atom's type vector in the corresponding grid channel. A mole-
cule with N atoms and atom type vectors of length NT can be
represented as a matrix of atom types T ˛ R

N�NT and a matrix of
atomic coordinates C ˛ R

N�3. The function that computes
atomic density grids g: RN�NT � R

N�3 / R
NT�NX�NY�NZ is then

dened as follows:

gðT ;CÞtxyz ¼
XN
a¼1

Tatf ðkCi � sðx; y; zÞk; 1:0Þ (3)

N is the number of atoms in the input molecule, so there is no
maximum number of atoms per grid. All atoms that t within
the spatial extent of the grid are represented. We used cubic
grids with side lengths of 23.5 Å and 0.5 Å resolution, resulting
in spatial dimensions NX ¼ NY ¼ NZ ¼ 48. Eqn (3) requires
a coordinate frame mapping from s: Z3 / R

3 grid indices to
spatial coordinates. We center the grids on the input molecule
before adding random translations and rotations during both
training and evaluation. This is facilitated by computing grids
on-the-y using libmolgrid, a GPU-accelerated molecular
gridding library.42
2.3. Atom tting algorithm

The inverse problem of converting a reference density grid Gref

into a discrete 3D molecular structure does not have an analytic
solution, so we solve it as the following optimization problem:

T*;C* ¼ arg min
T ;C

kG ref � gðT ;CÞk2 (4)

We can detect initial locations of atoms on a grid by selecting
from the grid points with the largest density values. libmolgrid
allows us to compute the grid representation of an atomic
structure and backpropagate a gradient from grid values to
atomic coordinates. Therefore, we devised an algorithm that
combines iterative atom detection with gradient descent to nd
Chem. Sci., 2022, 13, 2701–2713 | 2703
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a set of atoms that best ts a reference density, shown in
Algorithm S2.†

2.4. Bond inference algorithm

We construct valid molecules from the sets of atoms detected by
atom tting using a sequence of inference rules that add bond
information and hydrogens while trying to satisfy the
constraints dened by the atom types. The algorithm is based
on customized bond perception routines implemented in
OpenBabel.43,44 An overview of the procedure is shown in Algo-
rithm S1.†

2.5. Conditional variational autoencoder

Our generative model is a conditional variational autoencoder
(CVAE)45 of atomic density grids with the architecture displayed
Fig. 2 Generative model architecture. The input encoder maps
a protein–ligand complex to a set of means and standard deviations
defining latent variables, which are sampled to produce a latent vector
z. The conditional encoder maps a receptor to a conditional encoding
vector c. The latent vector and conditional vector are concatenated
and provided to the decoder, which maps them to a generated ligand
density grid. The input encoder and conditional encoder consist of 3D
convolutional blocks with leaky ReLU activation functions and residual
connections46 (see detail of Conv3DBlock), alternated with average
pooling. The decoder uses a similar architecture in reverse, with
transposed convolutions and nearest-neighbor upsampling instead of
pooling. U-Net skip connections47 were included between the con-
volutional features of the conditional encoder and the decoder to
enhance the processing of receptor context. Spectral normalization48

was applied to all learnable parameters during training. The value
displayed after module names in the diagram indicates the number of
outputs (or feature maps, for convolutional modules). If not specified,
the number of outputs did not change from the previous layer.

2704 | Chem. Sci., 2022, 13, 2701–2713
in Fig. 2. The objective is to learn to sample from the distribu-
tion p(ligjrec), where rec is a receptor binding site density and
lig is the density of a ligand that binds to it. We assume that
there is a latent variable z representing binding interactions
that follows a prior distribution we can sample, such as a stan-
dard normal distribution. The generative process consists of
drawing a sample z � p(z) followed by liggen � pq(ligjz, c), where
pq is a decoder neural network and c is an encoding of a receptor
density rec produced by a conditional encoder network.
Training this model by naive maximum likelihood estimation
would require computing the latent posterior probability pq(-
zjrec, lig), which is intractable. The key is to instead train an
input encoder network to learn an approximate model qf(zjrec,
lig) of the posterior distribution. The training task minimizes
two objectives:

Lrecon ¼ �log pqðligjz; cÞf 1

2
klig� liggenk2 (5)

LKL ¼ DKL

�
qfðzjlig; ckpðzÞÞ

�
(6)

The reconstruction loss term Lrecon term maximizes the
probability that latent samples from the approximate posterior
distribution z � qf(zjrec, lig) are decoded as realistic ligand
densities – specically, the real ligand density lig that was
provided to the input encoder. The Kullback–Liebler divergence
term LKL encourages the approximate posterior distribution to
match the true prior distribution, p(z) ¼ N(0, 1). The combined
effect is that the latent space follows a normal distribution,
enabling generative sampling, while the decoded samples are
expected to appear realistic in the receptor context. The model
is trained by providing real (rec, lig) examples to the encoder to
get latent representations of their interactions, then maxi-
mizing the likelihood of decoding the latent vectors back to the
corresponding ligand densities when conditioned on the
cognate receptor density.

Steric clash loss. We included an additional term in the loss
function that minimized steric clash in terms of the overlap
between the generated ligand density and the receptor density.
This was calculated by rst summing across the grid channels,
then multiplying the receptor and ligand density at each point:

Lsteric ¼
*XNT

i

reci;
XNT

i

liggen;i

+
(7)

We validated this as a measure of steric clash by checking
empirically that real protein–ligand complexes did not have
density overlap, owing to our use of a density kernel with
a relatively small, xed atomic radius. We combined the three
loss terms with weights into the nal loss function like so:

L ¼ lreconLrecon + lKLLKL + lstericLsteric (8)

The loss weights were initialized at lrecon ¼ 4.0, lKL¼ 0.1, and
lsteric ¼ 1.0, though the KL divergence loss weight was gradually
ramped up to 1.6 over 200 000 iterations, starting at iteration
© 2022 The Author(s). Published by the Royal Society of Chemistry
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450 000. The model was trained using RMSprop with learning
rate 10�5 for 1 000 000 iterations with a batch size of 8.

2.6. Training data set

The CrossDocked2020 data set is a massive collection of small
molecules docked into cognate and non-cognate receptors.49 An
initial set of 18 450 bound protein–ligand crystal structures
were clustered by pocket similarity and then input to a combi-
natorial docking procedure. Each ligand was re-docked to its
known receptor and cross-docked to every other receptor with
a similar pocket. Though noisier than crystallized or re-docked
poses, cross-docking greatly increases the amount of training
data and captures the distribution of structures that are typi-
cally used in drug discovery. The CrossDocked2020 data set has
cross-validation splits based on pocket similarity. We used the
rst split to construct our training and test data sets. We
omitted any poses that had root-mean-squared deviation
(RMSD) greater than 2 Å from the crystal pose of the ligand in its
cognate receptor. We also omitted molecules that could not be
sanitized with RDkit.50

2.7. Test target selection

We randomly selected ten targets from the CrossDocked2020 test
set to evaluate our model. Each target came from a different
pocket cluster, and we only considered targets with at least ve
unique ligands. We used the top-ranked docked pose of each
ligand in the set. The test targets and ligands are shown in Table 2.

2.8. Sampling methods

Our model has two distinct sampling modes called posterior
and prior sampling. The difference is whether the generative
process is biased towards a particular real protein–ligand
interaction, or if it is only based on the conditional receptor.
With posterior sampling, a real protein–ligand complex is
encoded into the latent variable parameters before drawing
samples. In contrast, prior sampling draws latent vectors from
a standard normal distribution, so it has no intentional bias
towards a specic real ligand. Using either method, the latent
vectors are combined with the conditional receptor encoding
before decoding an output ligand density. The known ligand for
the conditional receptor is called the reference molecule, which
Table 2 Test set targets. The proteins that were selected for test evaluat
test set proteins has a binding site from a different pocket cluster

PBD ID Ligand IDs

2ah9 bgn, udp, udh, cto, ud2, upg
5lvq aly, 5wv, 5wz, 2lx, 5ws, 5wu, 2qc, 78y
5g3n x28, oap, 8in, 6in, u8d, bhp, i3n, gel
1u0f g6p, 6pg, s6p, der, f6p, a5p
4bnw 36k, nkh, 36i, j2t, fxe, q7u, 3x3, 9kq,
4i91 cpz, 85d, cae, sne, tmh, 3v4, 82s
2ati avf, ave, ihu, 055, 25d, mrd, avd
2hw1 tr4, lj9, a4j, tr2, anp, a4g, a3y, a3j, q
1bvr xt5, tcu, 3kx, 3ky, 2tk, i4i, uud, geq,
1zyu adp, skm, anp, acp, s3p, dhk, k2q

© 2022 The Author(s). Published by the Royal Society of Chemistry
is the same molecule provided to the input encoder for poste-
rior sampling.

We investigated different levels of sampling variance
through a setting called the variability factor, denoted lvar. This
parameter scales the standard deviations used to sample the
latent space:

z0 ¼ m + lvarsz (9)

We also created a technique for controlling of the amount of
bias towards the reference molecule. Instead of using either the
posterior or prior distribution, we can sample distributions
whose parameters are linearly interpolated between those of the
prior and posterior according to a bias factor, referred to as lbias
here:

z
0 ¼ minterp þ sinterpz

minterp ¼ lbiasmpost þ ð1� lbiasÞmprior

sinterp ¼ lbiasspost þ ð1� lbiasÞsprior

(10)

For every sampling method that we evaluated, we generated
100 samples for each protein–ligand complex in the test set.
2.9. Evaluation metrics

We measured the validity, novelty, and uniqueness of the
molecules generated from our model, which were dened as
follows: a molecule is valid if it consists of a single connected
fragment and is able to be sanitized by RDkit, which checks
valency constraints and attempts to kekulize aromatic bonds. A
molecule is novel if its canonical SMILES string was not in the
training set. A molecule is unique if its canonical SMILES string
was not generated already in the course of test evaluations. We
also relaxed the internal bond lengths and angles of each
generated molecule in the context of the binding site by
Universal Force Field (UFF) minimization.51 We measured the
internal energy and root-mean-squared-deviation (RMSD) of the
molecules via UFF minimization. Both real and generated
molecules then underwent Vina minimization and scoring with
respect to the receptor. Lastly, we estimated the binding affinity
of the minimized structures using an ensemble of CNN scoring
functions that were trained on the CrossDocked2020 data set.
The Vina minimization and CNN affinity prediction were
ions and the associated ligands that were docked to them. Each of the

Num. ligands

6
,5wy, 5x0, 5wt, p2l, 82i, 5wx 14

8
6

36p,8m5, 34x, 36e, 36g 13
7
7

uz,a1y, a2j 11
665,nai, nad 11

7

Chem. Sci., 2022, 13, 2701–2713 | 2705
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performed using gnina, a deep learning-based molecular
docking program.9
3. Results
3.1. Properties of generated molecules

Validity, novelty, and uniqueness. 98.5% of molecules
generated from posterior sampling were valid and 90.9%
generated from prior sampling were valid, as seen in Fig. 3.
100% of all generated molecules were novel, indicating that the
model did not simply memorize the training set. Furthermore,
77.7% of posterior molecules and 99.9% of prior molecules
were unique.

Fingerprint similarity. The distribution of Tanimoto nger-
print similarity in Fig. 3 shows that generated molecules tended
to be quite dissimilar from the reference molecule. Posterior
molecules had an average similarity of 0.33 to the reference
molecule, though 25% of posterior molecules had similarity
greater than 0.5. Prior molecules were highly dissimilar from
the reference molecule, with 25% having similarity greater than
0.15.

Per-target diversity. Fig. 3 shows the diversity of generated
molecules sampled from the same conditional receptor,
measured as the inverse of their expected Tanimoto ngerprint
similarity. Using a variability factor of 1.0, the per-target diver-
sity was around 6 for posterior molecules and 5.5 for prior
molecules. The diversity was signicantly reduced when the
variability factor was decreased from 1.0, and slightly reduced
when it was increased.

Shape similarity. Two measures of molecular shape simi-
larity are depicted in Fig. S4.† The L2 loss from tting atoms to
real atomic density grids was close to zero, while it was in the
20–35 range for densities produced by the generative model.
The shape similarity between generated molecules and refer-
ence molecules was also computed by RDkit. The shape simi-
larity was around 0.62 for posterior molecules and 0.34 for prior
molecules.

Molecular weight and drug-likeness. Prior molecules were
smaller than posterior molecules by about 50 Da, but there was
considerable overlap in their molecular weight distributions,
shown in Fig. 3. A comparison of the quantitative estimate of
drug-likeness (QED) score52 between real and generated
Fig. 3 Properties of generated molecules. The percent of generated mol
UFF minimization, had lower Vina energy, or had higher CNN predict
separately for molecules from posterior and prior sampling. Also shown a
RMSD from UFF minimization, difference in Vina energy, and difference i
difference in CNN affinity were computed with respect to the reference

2706 | Chem. Sci., 2022, 13, 2701–2713
molecules is shown in Fig. S5.† Posterior molecules have
a similar drug-likeness distribution as real molecules, while the
QED score distribution for prior molecules has slightly heavier
tails.

UFF energy minimization. When minimizing the energy of
the generated molecules with UFF, we measured both the
change in energy and the RMSD of the initial pose to the
minimized pose. Fig. S5† compares the change in energy of
generated molecules and real molecules. The energy decreased
on the order of �103 kcal mol�1 and �104 kcal mol�1 for
posterior and prior molecules, respectively, compared to
�102 kcal mol�1 for real molecules. During UFF minimization,
the conformation changed by less than 2 Å in 91.3% of posterior
molecules and 81.0% of prior molecules.

Vina energy and predicted binding affinity. The relative
stability of the generated molecules in the receptor binding site
was quantied as the difference in Vina energy and CNN pre-
dicted binding affinity compared with the reference molecule,
which was also minimized with Vina. The Vina energy and
predicted affinity of posterior molecules were similar to those of
the reference molecule, but shied slightly towards higher
energy and lower affinity. The Vina energy of prior molecules
was signicantly higher than reference ligands, and the pre-
dicted affinity tended to be lower and more variable. The
diversity in the generated molecules was represented in their
Vina energy and CNN affinity scores. Some structural differ-
ences decreased the stability and others improved it. 30.8% of
posterior molecules and 17.3% of prior molecules had lower
minimized Vina energy than the reference molecule. Moreover,
15.4% of posterior molecules and 15.9% of prior molecules had
greater predicted affinity than the reference molecule aer
minimization. That is to say, a signicant minority of sampled
molecules were predicted to bind more strongly to the receptor
than the reference ligand.

Atom type distributions. Fig. S6† shows the distribution of
atomic properties in the generated molecules, while Fig. S2†
shows the atomic property distributions for real molecules from
the CrossDocked2020 data set. The generative model produced
diverse atom types that mostly matched the training set distri-
bution, with a few exceptions. The model did not generate any
boron, iron, bromine, or iodine atoms in our test evaluations,
ecules that were valid, novel, unique, moved less than 2 Å RMSD during
ed affinity than the reference molecule. These metrics are reported
re the distributions of molecular weight, Tanimoto fingerprint similarity,
n CNN affinity. The fingerprint similarity, difference in Vina energy, and
molecule (lower DVina energy is better, higher DCNN affinity is better).

© 2022 The Author(s). Published by the Royal Society of Chemistry
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despite that these elements were in the training data. Addi-
tionally, the model rarely generated atoms with formal charges.

Bond length distributions. Fig. S7† compares the distribu-
tions of minimized bond lengths in real and generated mole-
cules for the ten most common bond types. Overall, the bond
lengths of real and generated molecules were fairly similar. The
most noteworthy deviations were aromatic carbon–carbon and
carbon-nitrogen bonds in generated molecules, which tend to
be longer than in real molecules. The variance in length for
these bonds was especially high in prior molecules.

Bond angle distributions. Fig. S8† depicts the bond angle
distributions for real and generated molecules aer minimiza-
tion. The median angle for many common bond angle types
tended to be similar in real and generated molecules, but there
was more variance in generated bond angles. Small, strained
bond angles were fairly prevalent in generated molecules even
aer minimization. This is evidenced by the lower rst quartile
in a few of the bond angle distributions, in particular for
carbon–oxygen–carbon.

Torsion angle distributions. Fig. S9† portrays the distribu-
tions of torsion angles in minimized real and generated mole-
cules. There are notable differences in the torsion angle
distributions aer UFF minimization. The distributions of
torsion angles have different modes for generated molecules
than real molecules for a number of common torsion angle
types. On the other hand, aromatic torsion angles were centered
at zero and had very low variance. This indicates that aromatic
rings in generated molecules tended to be planar, as expected.

3.2. Controlling sampling variability and bias

Posterior variability. We tested whether controlling the
amount of sampling variability would alter the distribution of
generated molecules in useful ways. Increasing the variability
factor caused a corresponding increase in the diversity of the
generated molecules, while decreasing this parameter reduced
the diversity. Specically, molecules generated from the
Fig. 4 Controlling the variability of generated molecules. This figure dep
standard deviation of the latent distribution. The leftmost image shows the
row shows posterior molecules sampled using different variability factors

© 2022 The Author(s). Published by the Royal Society of Chemistry
posterior appeared more similar to the input ligand when using
a lower variability factor. This is reected in Fig. S10,† where
lower variability factors produced posterior molecules with
higher Tanimoto ngerprint similarity to the reference, and
higher variability factors decreased the ngerprint similarity.
An example of this relationship is shown in the rst row of
Fig. 4, where the posterior molecule with the lowest variability
factor is identical to the input ligand except for replacing an
alcohol with a ketone. As the variability factor increased, more
functional groups were modied and geometric changes were
more drastic. At the highest variability factor, the molecule has
only a faint scaffold similarity to the reference ligand. In addi-
tion to being more diverse, posterior molecules generated with
a higher variability factor also tended to be less energetically
stable and favorable in the binding pocket.

Prior variability. The effect of the variability factor on prior
molecules, exemplied in the second row of Fig. 4, was less
straightforward. There was no relationship between the vari-
ability factor and similarity to the reference molecule, but there
was a positive association with the average size and complexity
of the molecules. This is evidenced by Fig. S11,† which shows
that the molecular weight and energy of prior molecules
increased with the variability factor. This can be explained by
considering two facts: (1) increasing the variability decreases
the expected probability of the generated samples under the
learned prior distribution (and by extension, increases their
distance from the training data manifold), and (2) neural
networks with ReLU activation functions are piece-wise linear.
The farther that we sample from the training data manifold, the
more likely it is that we end up in a linear region of a network
activation, any of which could be associated with the generated
density magnitude in some location. This would explain why we
observe larger molecules when sampling less probable regions
of latent space. Although prior molecules with increased vari-
ability tended to be less favorable in terms of energy and
binding affinity, the variance in these metrics increased as well.
icts the effect of sampling molecules using different multipliers on the
real ligand that was input to themodel for posterior sampling. The first
. The second row shows prior samples with different variability factors.

Chem. Sci., 2022, 13, 2701–2713 | 2707
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Fig. 5 Controlling bias towards the reference molecule. This figure shows the effect of sampling molecules from latent distributions that
interpolate between the posterior and prior. On the far left is the real molecule that was used to define the posterior distribution, followed by
molecules sampled using different bias factors. A bias a factor of 1.0 indicates the full posterior distribution and 0.0 indicates the full prior
distribution.
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At higher variability factors, there were still a signicant frac-
tion of prior molecules that had lower Vina energy and higher
predicted affinity than the reference molecule.

Bias towards reference molecule. Next we evaluated the
impact of sampling from interpolated latent distributions using
the bias factor. Fig. 5 depicts a set of molecules generated using
a single reference molecule with different bias factors, ranging
from fully-posterior to fully-prior. The molecule with the high-
est bias factor is extremely similar to the reference ligand. As the
sampled distribution became more prior-like, the molecules
grew increasingly dissimilar from the reference ligand,
converging on the distribution of prior molecules. This effect is
shown quantitatively in Fig. S12.† As the bias factor increased,
the molecular weight of the generated molecules approached
the posterior distribution of the reference molecule, and the
Tanimoto similarity grew as well. Increasing the bias factor also
gradually shied the distributions of minimized RMSD, differ-
ence in Vina energy, and difference in predicted affinity from
that of the prior molecules to that of the posterior molecules.
3.3. Conditioning on mutated receptors

To test the extent that our model uses the conditional receptor
when generating molecules, we compared molecules generated
from the same reference ligand, but conditioning the generative
process on mutated versions of the receptor. Then we compared
the molecular similarity, difference in Vina energy, and differ-
ence in CNN affinity with respect to the reference molecule. The
Vina energy and predicted affinity were calculated using the
conditional (i.e. mutant) receptor in this evaluation, for both
real and generated molecules. Therefore, these metrics can be
used to determine whether the model takes the conditional
receptor structure into account or if it generates similar mole-
cules regardless.

Shikimate kinase target. The target we selected for this
analysis was shikimate kinase from Mycobacterium tuberculosis
(PDB ID: 1zyu).53 This enzyme is involved in the biosynthesis
pathway for chorismate, a precursor for aromatic amino acids,
in bacteria. Because it is not found in animals or plants, shi-
kimate kinase has been proposed as a promising target for the
development of non-toxic antimicrobial agents for a variety of
uses including the treatment of tuberculosis.54 We focused on
the shikimate binding site of the kinase in this work, which has
been suggested to be more druggable than the ATP binding site.
2708 | Chem. Sci., 2022, 13, 2701–2713
The residues that were identied in the literature as important
for binding with shikimate are Asp34, Arg58, Glu61, Gly80,
Gly81, and Arg136. Out of these, the charged residues Asp34,
Arg58, and Arg136 were most frequently found to interact with
the ligand. Asp34 and Arg58 were specically depicted partici-
pating in hydrogen bonds.

Creating mutant receptors. We considered every residue of
shikimate kinase within 5 Å of the docked pose of shikimate as
a binding pocket residue. For each of these, we mutated the
receptor by replacing the residue with alanine. For charged
residues, we created additional mutants by replacing the
residue with an oppositely charged residue of similar size.
Finally, we created four additional structures with multi-residue
mutations. One of these replaced every binding pocket residue
with alanine (All). Another replaced every residue known to be
relevant for binding shikimate with alanine (All interacting). A
third replaced every binding pocket residue not considered
relevant for binding with alanine (All non-interacting). Finally,
we created a mutant that replaced every charged binding pocket
residue with an oppositely charged one of similar size (All
charges).

Conditioning on multi-residue mutants. Molecules gener-
ated based on mutated shikimate kinase receptors are depicted
in Fig. 6. The molecule generated from the wild type receptor is
quite similar to shikimate, except for breaking the double bond
and inserting an oxygen in the ring. On the other end of the
spectrum, replacing every binding pocket residue with alanine
caused drastic changes to the generated molecule. The crucial
carboxylic acid group was removed, the scaffold expanded, and
the overall hydrophobicity increased. When only the non-
interacting residues were mutated, the molecule expanded
towards the top of the pocket where most of the mutations
occurred, but the polar moieties towards the bottom of the
pocket remained available for hydrogen bonds with Arg58 or
Arg136. The top oxygen of the carboxylic acid also turned into
a carbon, reecting its newly hydrophobic environment. In
contrast, mutating the interacting residues transformed the
bottom oxygen of the carboxylic acid into a carbon instead,
which makes sense given that it could no longer form hydrogen
bonds with arginine. Additionally, the remaining oxygen reor-
iented towards the top of the pocket, which became relatively
hydrophilic. Inverting every charged residue diminished the
size of the molecular scaffold and added a nitrogen to the end of
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Conditioning generated molecules on shikimate kinase mutants. This figure displays posterior molecules that were generated using
shikimate as the input ligand, shown in the top left corner. They were each conditioned on mutated versions of the shikimate kinase receptor.
After the reference molecule, the first row shows molecules generated from the cognate receptor (wild type) and four different multi-residue
mutants. The next three rows show molecules conditioned on receptors with different single-residue mutations. The mutations highlighted in
blue involve residues identified in previous work as making important binding interactions with shikimate. Mutations that inverted the charge of
the residue are highlighted in red.
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the carboxylic acid. This transformed it from a strong hydrogen
bond acceptor to a potential donor that could interact with the
glutamic acid that replaced Arg136.

Conditioning on single-residue mutants. The single-residue
shikimate kinase mutations had varying effects on the gener-
ated molecules. Only a few mutations of the non-interacting
residues caused notable effects. Replacing Pro11 with alanine
transformed the carboxylic acid into a phosphate group.
Changing Phe49 to alanine created a hole towards the right rear
of the pocket where the model extended a rigid alcoholic tail.
Transforming Leu132 to alanine extended the carboxylic acid
into the new space by inserting a nitrogen atom. The rest of the
non-interacting mutations caused only modest scaffold alter-
ations, but mutating the interacting residues caused more
interesting effects. Replacing Asp34 with alanine inserted
a carbon to form a ring out of the two former hydroxyl groups,
which was consistent with the reduced polarity and increased
space at the front of the pocket. Replacing Asp34 with lysine
© 2022 The Author(s). Published by the Royal Society of Chemistry
broke the ring by removing a carbon, but kept the hydroxyl
groups that might interact with the lysine. Converting Arg136 to
alanine transformed the bottom oxygen of the carboxylic acid
into an aliphatic tail extending into the open space. Mutating
Arg136 to glutamic acid turned the carboxylic acid group from
a hydrogen bond acceptor into a donor by adding a nitrogen.
Surprisingly, none of the mutations to Arg58, Gly80, or Gly81
resulted in drastic chemical changes, despite that these were
mentioned in past work as relevant for binding.

Testing receptor conditionality. To test whether condi-
tioning on mutated receptors altered the generated molecules,
we ran Kolmogorov–Smirnov tests on the distributions of
ngerprint similarity, change in Vina energy, and change in
CNN predicted binding affinity with respect to the reference
molecule. The distributions we compared were for the posterior
molecules conditioned on the mutant and the ones conditioned
on the wild type receptor, which are shown in Fig. S13.† We
used a signicance level of a ¼ 0.05 with one-sided alternative
Chem. Sci., 2022, 13, 2701–2713 | 2709
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hypotheses. We tested whether conditioning on the mutant
decreased the molecular similarity and change in Vina energy,
and whether it increased the change in predicted binding
affinity for the conditional receptor.

For posterior molecules, the distributions of molecular
similarity and change in predicted affinity were signicantly
different for each of the multi-residue mutations and several
single-residue mutations. Modifying the interacting residue
Arg136 caused signicant differences in all three metrics.
Mutating Asp34 to alanine signicantly decreased the similarity
and increased the change in predicted affinity, but did not
decrease the change in Vina energy. Mutating Arg58 to alanine
resulted in no signicant differences. Interestingly, inverting
the charge of either Arg58 or Asp34 only caused signicant
differences in the molecular similarity, but did not improve the
change in Vina energy or predicted affinity. It was also unex-
pected that mutating the non-interacting residue Phe49 caused
signicant differences in all three metrics.

We tested for differences in the property distributions of
prior molecules generated from mutant receptors, shown in
Fig. S14,† in the same way. There were no signicant differences
in molecular similarity, which was expected since prior mole-
cules are not biased towards the reference molecule. However,
Fig. 7 Latent interpolation between shikimate kinase ligands. This figure
different known actives for shikimate kinase. Starting with a prior molecul
with the real molecule shown at the end of the row. The interpolatedmol
endpoints of the latent interpolation. The molecules in this graphic were

2710 | Chem. Sci., 2022, 13, 2701–2713
there were signicant improvements in change in Vina energy
and CNN affinity for all multi-residue and Arg136 mutants.
Replacing Asp34 or Arg58 with alanine caused signicantly
higher changes in predicted affinity, but not lower Vina energy.
Inverting the charge of Asp34 or Arg58 lead to signicantly
lower change in Vina energy, but only increased the change in
predicted affinity for Arg58.
3.4. Latent space interpolation

We explored the latent space of our model further through
interpolation between different known ligands of shikimate
kinase. Our test set contained seven different binders for this
target, four of which were bound at the shikimate active site. We
encoded each of these four ligands with our model to obtain
posterior latent vectors, then performed a spherical interpola-
tion in latent space passing through each latent vector, and
decoded molecules along the resulting latent trajectory. Each
latent vector was decoded using the conditional information
from the shikimate kinase receptor, and the center of the
conditional grids were interpolated smoothly between the real
ligand centers. The resulting interpolation can be viewed in
Fig. 7.
depicts a series of spherical interpolations in latent space between four
e, each row displays an interpolation to the next ligand in the sequence,
ecules are labelled with the weights that were used to combine the two
not minimized with any force field.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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The initial prior molecule was quite dissimilar from the
endpoint of the rst interpolation (reference molecule 1), but
the intermediate steps resembled each endpoint. The molecule
halfway between them has three hydroxyl groups bound to an
aliphatic ring, but one phosphate was retained from the prior
molecule in place of the carboxylic acid of reference molecule 1.
The next endpoint (reference molecule 2) was extremely similar
to the rst, which was reected in the interpolation between
them. The conserved atoms smoothly moved through space
except for an abrupt change in chirality at one of the ring
carbons. A smooth translation of this carbon would have
resulted in geometry with a different hybridization state and
bond orders, so this sudden chiral shi better maintains the
chemical similarity to the endpoints. The third endpoint
(reference molecule 3) had a slightly different scaffold, but
similar functional groups. The trajectory passed through a few
strained molecules with small rings that have high overall
shape similarity. The nal interpolation gradually transformed
the newly added ring of reference molecule 3 into an alkyl
branch that then became a diol before nally ending at the
phosphate group of reference molecule 4.

4. Discussion

We have demonstrated for the rst time the ability to generate
three dimensional molecules conditional on receptor binding
pockets with deep learning. Over 90% of the generated mole-
cules were valid, novel, and unique, though these metrics are
insufficient to evaluate the quality of 3D molecular conforma-
tions. For this, we highlight the fact that over 80% of the
generated molecules moved less than 2 Å RMSD when mini-
mized with UFF, which provides an indication of their energetic
stability within the binding site. To further emphasize the
potential utility of our model for discovering active molecules,
a signicant number of generated molecules had lower Vina
energy and higher predicted binding affinity for the receptor
than the reference molecule.

The generated molecules tended to have more strain than
real molecules which is why we relaxed their internal bond
lengths and angles with UFF. This is probably due to the lack of
explicit bond information used by the model, which instead
relies only on the relative positions of local density maxima to
determine atom locations. Small differences in the generated
density can alter the position of a single atom, which can
translate into disproportionately high energy. One promising
avenue for future work is to integrate an energetic term into the
loss so that the model is directly trained to produce stable
molecules. This would require the ability to differentiate
through the atomic coordinates, which is easier with an atom-
istic representation than atomic density grids. We are currently
exploring a multi-modal approach that combines density grids
with 3D molecular graphs to learn both global shape and inter-
atomic features.55

We successfully showed that our generative model condi-
tions its output on the receptor structure. We qualitatively and
statistically veried that the model produced chemically rele-
vant modications in the generated molecules when
© 2022 The Author(s). Published by the Royal Society of Chemistry
conditioned on shikimate kinase mutants. All multi-residue
mutations caused signicant changes in the properties of
generated molecules, and some of the important single-residue
mutations did as well. Modifying Arg136 caused signicant
changes in all relevant properties we assessed, for both poste-
rior and prior molecules. There were some differences between
what residues were reported in the literature as important for
binding compared with the mutations that caused changes in
our model's output. For instance, Arg58 mutations did not tend
to cause signicant changes, even though it was described as
a hydrogen bond participant. Phe49mutations had a signicant
impact on posterior molecules even though this residue was not
described as interacting with shikimate. It was also surprising
that inverting charges did not cause more drastic changes to the
generated molecules. This could be due to inconsistent charges
and protonation states in the training data.

We also found that the generation of molecules using atomic
density grids is quite sensitive to the hyperparameters of the
grid representation. Augmentation of training with random
rotations was crucial for counteracting the coordinate-frame
dependency of the density grids. There was also an interac-
tion between the grid resolution and atomic radius used in the
density kernel. When several atoms are nearby in the same grid
channel (e.g. aromatic carbon rings), the density of each atom
can overlap and produce a peak in the middle of the ring or
bond. This makes it difficult to resolve the individual atoms
through atom tting. By reducing the radius of the density
kernel, it becomes easier to distinguish atoms in close prox-
imity at a given grid resolution, thereby producing more accu-
rate and chemically realistic structures. Optimization of these
grid settings had a signicant impact on the quality of the
generated molecules.

In future work, we will experiment with training setups that
emphasize the use of the conditional receptor. One interesting
augmentation would be to apply different random rotations on
the input branch and conditional branch, then train the model
to generate ligands in the conditional coordinate frame. This
would encourage a coordinate frame-invariant latent space and
enforce reliance on the structural characteristics of the condi-
tional receptor to determine the generated ligand orientation.
Another enhancement would be to train using different recep-
tors within the same binding pocket cluster of the Cross-
Docked2020 set in the input and conditional branch. A more
challenging future direction would be to provide higher-RMSD
ligand poses as the input to the model and train using the
lowest-RMSD pose as the label, essentially performing instan-
taneous minimization for docking.

We hope that this work accelerates the usage of 3D protein
structure in molecular generative models. There is vast poten-
tial for further development of this approach. To enable the
reproduction and extension of this work, we provide open
access to all data, code, and model weights.

Data availability

The data sets, code, and model weights used in this work are
available for download at https://github.com/mattragoza/liGAN.
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