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hitectures to accelerate chemical
discovery: data accessibility for individual
laboratories and the community

Rebekah Duke, Vinayak Bhat and Chad Risko *

As buzzwords like “big data,” “machine learning,” and “high-throughput” expand through chemistry,

chemists need to consider more than ever their data storage, data management, and data accessibility,

whether in their own laboratories or with the broader community. While it is commonplace for chemists

to use spreadsheets for data storage and analysis, a move towards database architectures ensures that

the data can be more readily findable, accessible, interoperable, and reusable (FAIR). However, making

this move has several challenges for those with limited-to-no knowledge of computer programming and

databases. This Perspective presents basics of data management using databases with a focus on

chemical data. We overview database fundamentals by exploring benefits of database use, introducing

terminology, and establishing database design principles. We then detail the extract, transform, and load

process for database construction, which includes an overview of data parsing and database

architectures, spanning Standard Query Language (SQL) and No-SQL structures. We close by cataloging

overarching challenges in database design. This Perspective is accompanied by an interactive

demonstration available at https://github.com/D3TaLES/databases_demo. We do all of this within the

context of chemical data with the aim of equipping chemists with the knowledge and skills to store,

manage, and share their data while abiding by FAIR principles.
Introduction

Chemistry is no stranger to big data. As early as the 19th
century, chemists compiled atomic and molecular information
in catalogs, such as the Beilstein Handbook of Organic Chem-
istry1 and Gmelin Handbook of Inorganic Chemistry,2 where
molecular, physical, and spectroscopic properties and synthesis
pathways were recorded. Journals and periodicals also cata-
loged the emerging chemical literature with card index
systems.3 During the next century, more collections of chemical
data arose such as the Chemical Rubber Company (CRC)
Handbook, which was compiled and sold by a young engi-
neering student trying to pay his way through college.4 Even-
tually, organizations like the International Union of Pure and
Applied Chemistry (IUPAC) collected and standardized chem-
ical data, resulting in the Color Books.5 With the advent of
computer technology and virtual storage in the late 20th
century, these catalogs and journals migrated to electronic
formats. Today, chemists access big data daily by exploring the
literature with resources such as the Web of Science or by
searching online chemical catalogs such as SciFinder and
Reaxys (which includes the original Gmelin and Beilstein
Applied Energy Research, University of

E-mail: chad.risko@uky.edu

13656
data).6,7 The big chemical data in these online formats inform
and direct research across the discipline.

With more precise and efficient instrumentation, individual
laboratories now generate data on scales previously seen only in
these corporate catalogs and databases. For example, a single X-
ray crystallography experiment can generate up to 90 gigabytes
of data, meaning experiments could generate a terabyte of data
in only a few days,8 while a molecular dynamics simulation with
100 million atoms can produce 5 gigabytes of data per frame.9

These vast catalogs of data are now paving the way for data-
driven research methods, offering a move away from time-
consuming and resource-expensive Edisonian trial-and-error
approaches.10,11 Agrawal and Choudhary termed the use of big
data in chemistry the “4th paradigm” in chemical research,
following the paradigms of empirical science, model-based
theoretical science, and computational science.12 The shi
towards big data-driven chemistry has the potential to amplify
lab productivity and escalate scientic progress as much as it
has done in the elds of biology and medicine.13,14

The generation of large volumes of data and increasing
emphasis on data accessibility requires individual laboratories
to consider new strategies for data management, as reected in
the growing demand for data management plans by federal
funding agencies.15–20 Additionally, to effectively create and
implement data-driven research methods, there is a need for
the data to meet several criteria. A specic data piece, perhaps
© 2022 The Author(s). Published by the Royal Society of Chemistry
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a spectroscopic measurement for a chemical system, should be
ndable with a straightforward search. Concurrently, the
measurement data should be accessible via standard data
access procedures, even if the access includes authentication.
The data structure and terminology (for instance, the name of
the chemical system and the organization of chemical
descriptors) should be interpretable by anyone with sufficient
domain knowledge. Finally, there should be enough informa-
tional data describing the measurement of the chemical system
(metadata) that the measurement can be reproduced, making
the data reusable. These characteristics—ndable, accessible,
interoperable, and reusable—constitute the FAIR data princi-
ples.21 FAIR data principles offer the potential to dramatically
enhance data and machine-driven evolutions in chemistry, but
it demands not only digitizing chemical data but also capturing
the necessary input parameters, process operations, and output
data.

Standard data management tools such as spreadsheets and
lesystems are not equipped to manage the volumes of data
that researchers can now produce, and they are difficult to adapt
to FAIR data principles. Most spreadsheet soware cannot host
more than a million data entries, and these data are maintained
at signicantly reduced processing speeds; optimum perfor-
mance is seen with only a few hundred thousand data entries.22

Problems pertaining to performance become exaggerated when
dealing with multi-dimensional data. Additionally, le-based
systems facilitate redundancies, which increase storage costs
and enable data inconsistencies. The embedded auto-correct
features in many spreadsheets have also notoriously caused
data errors in published data.23,24 The system of spreadsheets,
lesystems, and laboratory notebooks alone will not meet the
needs of chemists to store and share growing amounts of FAIR
data.15,25–27

Database management systems (DBMS) provide solutions to
many of these problems. Databases store large quantities of
similar, oen multi-dimensional data in a consistent organi-
zational structure that can abide by FAIR. Databases are readily
scalable, searchable, and sharable. Additionally, as data anal-
yses (specically, big-data analyses) become amore integral part
of chemical discovery, chemists will need time-saving tools to
automate these processes. A database's search infrastructure
and consistent organizational structure can accelerate and
enable automated analyses. Further, databases are critical for
(semi)autonomous robotic experiments, as they allow for the
management of large data volumes and automated analyses.28

Domain specic databases have arisen to store FAIR data,
such as the Materials Project29 for inorganic materials, the
Cambridge Structural Database (CSD)30 for crystal structures,
and the Protein Data Bank (PDB)31 for protein structures.
However, for a chemist interested in creating databases for their
specic chemical domain or in their own laboratory, the
educational resources can be complex. Hence, there is a need to
provide information to train chemists tomanage large data with
databases that abide by FAIR data principles.

In this Perspective, we aim to present an introduction to
database fundamentals for a chemistry audience. We rst
illustrate the advantages of databases over standard le-based
© 2022 The Author(s). Published by the Royal Society of Chemistry
data management before describing basic terminology and
database design principles. We explore data parsing along with
Standard Query Language (SQL) and No-SQL database archi-
tectures by exploring the extract, transform, and load process
for building a database. Finally, we reect on some overarching
challenges in database design. We do all this with chemistry-
specic examples and explanations to promote the creation
and accessibility of domain specic data in the realms of FAIR
data. We also provide a collection of interactive examples to
complement the discussion in this article, which can be
accessed at https://github.com/D3TaLES/databases_demo.

Database fundamentals
Why databases?

In modern chemistry, the spreadsheet is a ubiquitous tool for
storing and analyzing data. The spreadsheet can be effective for
managing and analyzing a few to thousands of datapoints,
especially when users are familiar with the tools and data
formats. Given the ease and ubiquity of spreadsheet-based
systems, why should one invest the time and effort to build
and learn a DBMS?

Scientic data generated in research laboratories are saved
across several les with diverse formats. This data heterogeneity
impedes rapid analysis when tools such as laboratory note-
books and spreadsheets are used to store processed data. To
demonstrate the utility of databases compared to lab notebooks
and spreadsheets, consider the problem of comparing singlet
excitation energies (or wavelengths) determined via a quantum-
chemical calculation with the optical response measured in
a UV-Vis absorption experiment (Fig. 1). First, a researcher
opens the output le from the quantum-chemistry soware,
extracts the desired energy values and stores them, perhaps in
a spreadsheet. The researcher must then extract and store data
points from the absorption spectrum, plot the spectrum, and
identify the absorption energies.32 Even if the data extraction
process is automated with code, the researcher must manually
transfer the data to a laboratory notebook or another spread-
sheet to compare the DFT-computed and experimentally-
measured energies. Oen, data are manually transferred
again to another specialized soware for analysis, and this
entire process must be repeated for each additional experiment.
The process is clunky and time-consuming to repeat. Sharing
data introduces more problems because raw data and calcula-
tionsmay be inmultiple spreadsheets, whichmay not be readily
interpretable by collaborators, and sharing les via email or
even some le sharing apps can create issues with version
consistency. When using a database, raw data are imported
directly into the database once. All subsequent analysis, calcu-
lations, and comparisons nd and use data from the database.
Additionally, database access can be granted to collaborators,
enabling easy and constantly up-to-date data sharing.

Consider another problem: imagine plotting the data from
a series of UV-Vis experiments with benzene and like derivatives
(e.g., nitrobenzene, anthracene) where only molecules with
a singlet excitation greater than 4 eV are plotted. Here, the
researcher must rst extract data from the raw experimental
Chem. Sci., 2022, 13, 13646–13656 | 13647
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and computation data les. There are multiple ways to arrange
this data in the spreadsheet; we consider the following –

columns for absorbance (transmittance), absorption wave-
length, excitation energy, and the molecule identier. Within
a spreadsheet, plotting spectra only when the excitations are
greater than 4 eV requires manual selection or sophisticated
data transformations. To perform this analysis on another set of
experiments, the researcher must repeat this entire process.
Alternatively, for data stored in a database, a single line of code
fetches the data, and a few lines of code plot the analysis.
Because databases embed relationships between like data,
a minor modication to the original query would perform the
analysis on any new data. The advantages from these examples
are demonstrated in the accompanying code.33

As shown by this thought experiment, the use of databases to
store data can promote rapid analyses. Furthermore, databases
are designed to manage large quantities of data and are easily
adapted for big data analysis. The sections that follow detail the
processes of inserting computational and UV-Vis data into
a database and making queries like the ones discussed above.
They also discuss the distinct types of databases that can be
used along with the pertinent terminology.
Database terminology

Before delving deeper into database structure and design, we
must rst establish a basic terminology (Table 1). A database is
a collection of data structured in a manner that captures the
relationships between groups of like data. These individual
pieces of data are termed data records. For example, a database
may contain a group of data concerning molecules with UV-Vis
and computational data. A single data recordmay correspond to
a single molecule. Each data record has a series of attributes
that contain information about the record. So, each molecular
Fig. 1 Schematic demonstrating advantages of a (right) database manage
Note some advantages of a DBMS over file-based data management: co
data transformations, and reduced risk of redundant and inconsistent da

13648 | Chem. Sci., 2022, 13, 13646–13656
data record in our example might have attributes such as
source, date synthesized, and UV-Vis data. One attribute must
uniquely identify the record; this becomes the primary key. The
primary key that identies a molecule data record might be the
molecule IUPAC name or a SMILES34 or SELFIES35 string (Fig. 1).
Similar data records are grouped together so that each data
grouping has a dened organizational structure. The organi-
zational outline of a data group is a schema, a map that notes
how each attribute in a data record is related. By denition, all
records in a data group use the same schema. Dening the
schema is critical for efficient database searches and con-
structing FAIR data; schema will be discussed in detail later.

Building a database: extract, transform,
and load

Building a database and populating it with data involves three
key steps: extract, transform, and load (ETL) (Fig. 2).38 Data
must rst be extracted from the raw data les, and then trans-
formed into a structure that is compatible with the database
schema. Finally, the transformed data must be loaded into the
database. The development of this process is a critical step
toward efficiently populating a database.

Extract

The process of extracting data from the original les is the step
most like the manual processes used in le-based data
management systems. In fact, data extraction for a database can
be done manually by opening a data le and identifying key
data. For example, in the UV-Vis optical absorption example
above, the researcher could open the UV-Vis spectrometer
output le, identify a particular absorption peak, and input that
value into the database.
ment system (DBMS) over a (left) file-based data management system.
nsolidated data, fast and repeatable data queries that replace complex
ta.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Database terminology definitions, as adapted in part from
Principles of Database Management36

Term Denition

Database
management
system (DBMS)

A soware package consisting of several soware
modules used to dene, create, use, and maintain
a database.36

Database A collection of related data items within a specic
process or problem setting stored on a computer
system through the organization and management
of a database management system.36

Data groups A collection of related data that is stored in the same
format.
SQL term: Table, No-SQL term: Collection37

Data record A complete data instance for an individual item. A
data group contains many data records, each
containing different data in the same structure.
SQL term: Row, No-SQL term: Document37

Attribute A characteristic of a data record.
SQL term: Column, No-SQL term: Field37

Multidimensional
data

Data where an attribute is more than a single item.
For example, an attribute may be a list, or it may
include sub-attributes. This requires special data
structures. In SQL, multidimensional data are
handled with Table Joins, while in No-SQL, they are
handled with Embedded Documents.

Primary key A selected candidate key that identies tuples in the
relation and is used to establish connections to
other relations; must be unique within the
relation.36

Schema The description of the database data at different
levels of detail, specifying the data items, their
characteristics and relationships, constraints, etc.36

Query The request and retrieval of data from a database.
Insertion The addition of data to a database.
Extract transform
load (ETL)

The process in which data are extracted (E) from the
source systems, transformed (T) to t the database
schema, and then loaded (L) into the database.36
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However, extraction can be automated with code to expedite
data analysis and reduce human error. There are many open-
source packages that reduce the amount of effort to write
parsing code. Imagine our researcher's spectrometer produces
Fig. 2 Schematic depictions of fundamental steps in populating a databa
vis spectroscopy data.

© 2022 The Author(s). Published by the Royal Society of Chemistry
a spreadsheet with wavelength and absorbance data. A mere
four lines of code in the coding language Python with the
packages pandas and scipy could extract data and nd the
minimum absorption energy (Fig. 3). Moreover, those four lines
of code are applicable to all future spectrometer data les. A
more in-depth discussion of parsing techniques is beyond the
scope of this Perspective, but a full demonstration can be found
in the accompanying code.33 Regardless of the method used,
extraction should pull important data from the raw data les so
it will be ready for the next step.
Transform

Aer extraction, data is transformed into the schema-specied
format. Schema design is the rst step in constructing a data-
base. Designing the database schema is similar in concept to
planning the rows and columns in a spreadsheet. Advanced
spreadsheet users know that, especially when dealing with
multi-dimensional data, deliberately planning the column/row
structure alleviates many difficulties later during analysis.
While it can be time consuming on the frontend, appropriate
schema design is essential for an efficient and FAIR database.
Unintuitive schema design yields non-interoperable data.
Additionally, because database searches use schema structure,
inefficient schema design can produce time-intensive queries.
For example, with a database of computational and absorption
data, a small molecule chemist might be most likely to query
small molecules and their properties, so the molecule-centric
schema (where each data record is a molecule) would be most
efficient for the laboratory. On the other hand, a computational
chemist might more oen query individual calculations, so
a computation-centric schema (where each data record is
a computation) would be most effective for that laboratory.

The rst decision in schema design is the schema structure
type. The two most common structure types are structured
query language (SQL) and No-SQL (Fig. 4).37 SQL is structured
like a series of tables, while No-SQL is structured like
a branching tree. Both structure types have a master schema
(organizational structure) that all records must follow. Addi-
tionally, in both types, one of the attributes for each recordmust
es – extract, transform, and load – depicted here in the context of UV-

Chem. Sci., 2022, 13, 13646–13656 | 13649
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Fig. 3 Schematic describing the four lines of code needed to extract data from a spectrometry comma-separated values (CSV) file and
determine the energy of the first low-lying excited state related absorption peak. The bullet points note the python command needed for each
line. Full code can be found in the accompanying demonstration code.
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be a uniquely identifying primary key. This enables records to
be identied and easily searched. Oen, primary keys are
randomly generated strings of numbers and letters. For
example, the digital object identier (DOI) generated for every
published article frequently serves as a database primary key.

SQL. The SQL database structure is the original data
management structure. It contains collections of two-
dimensional tables, akin to collections of spreadsheets pages.
The table rows are data records, and columns are attributes.
Each attribute (column) can contain only a single numerical or
text value for each record (row). When a data record has an
embedded attribute, an SQL database uses multiple tables. For
example, a molecule may contain the attribute UVVis_Data;
however, UVVis_Data contains embedded attributes such as
Instrument_Name and Optical_Gap. To accommodate these data,
the rst table contains the molecule record with its primary key
and its regular attributes, while another table contains
UVVis_Data and its attributes. Each record in UVVis_Data
Fig. 4 Schematic representation of the two most common schema type
vis spectroscopy data.

13650 | Chem. Sci., 2022, 13, 13646–13656
connects to the molecules table with a table-joining column.
This column contains a molecule primary key (Fig. 4).39,40 There
are several advantages to an SQL structure. A well-implemented
table structure eliminates many data redundancies, increasing
data storage efficiency. Also, because of its longevity, the SQL
data structure is well documented and supported. These data-
bases can be well-secured, and all SQL-structured databases use
the universal Standard Query Language (SQL, from which these
databases derive their name).

No-SQL. No-SQL structures contain one or more collections
of records (called a document in many types of No-SQL). Within
a collection, all documents share a schema. Schemas have
a tree-branch structure. Each document contains a series of
attributes (branches in the tree), each of which may contain
a value or list. An attribute may also contain embedded attri-
butes, e.g., smaller branches off the main branch. Fig. 4 shows
the nested nature of a No-SQL schema for the UVVis_Data.
These nested attributes provide scalable depth to a No-SQL
s in databaes design (SQL and No-SQL) depicted in the context of UV-

© 2022 The Author(s). Published by the Royal Society of Chemistry
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database. A single document can easily hold all related data for
a record like a molecule, simplifying schema interpretation.
Additionally, a No-SQL schema is exible. This enables dynamic
schema adjustments amid the development processes and allows
the shaping of schemas to t expected queries, making future
data transactions extremely efficient.37 Finally, the modular
format of documents allows these databases to be scaled to
multiple servers.41 A portion of the documents can easily be
transferred to a new server if the original runs out of space.

Selecting a schema. Both SQL and No-SQL schema types
have advantages and disadvantages. For instance, the strict
table-based SQL structure limits schema design options. An
application's data must conform to an SQL table schema rather
than the other way around. Additionally, the restricted schema
structure inhibits a schema designed around Perspective
queries, oen leading to much slower query times.37 The
interconnected table structure also prevents divided storage,
limiting scalability. On the other hand, unlike SQL, No-SQL
databases cannot guarantee perfect consistency between docu-
ments because separate documents are more prone to redun-
dancies. These redundancies also make No-SQL databases
bigger and less storage-efficient than SQL. Additionally, No-SQL
databases do not share the Standard Query Language, so each
database soware can have its own query format.

Ultimately, No-SQL databases are best for prioritizing exi-
bility, ease of design, and scalability, while SQL databases are best
for prioritizing efficiency and consistency.42,43 There are many
open access No-SQL soware, the most notable of which is
MongoDB,44 known for its user-friendly interface and high
consistency despite the limitations of No-SQL structures.45–47

Common SQL soware includes MySQL,48 PostgreSQL,49 and
Oracle, though soware matters less with SQL databases since
they all use the Standard Query Language.50 The demonstration
GitHub repository for this Perspective gives an example of
building a No-SQL database with MongoDB and a SQL database.33

Once a schema type is selected, the database designer builds
an organizational structure that ts the data needs. The design
should be efficient yet intuitive. Fig. 4 depicts an effective
schema design for absorption data in both SQL and No-SQL
structures. Schema design is by far the most time-intensive
aspect of the transform step. Once the schema is designed, data
from the extraction step is formatted to match the schema,
oen done through dictionaries (No-SQL) or tables (SQL).
Load

Finally, the extracted and transformed data is loaded (or
inserted) into the database. Anytime data is written to or read
from a database, a transaction occurs. Transactions are the
building blocks for database interaction. A transaction that
writes information to the database is an insertion, while
a transaction that reads information from the database is
a query. An insertion or query can be made individually through
a single line of code or automated so that hundreds of inser-
tions are performed with one command.

While the ETL process is a critical component in imple-
menting a database, there are other technical considerations
© 2022 The Author(s). Published by the Royal Society of Chemistry
involving setting up and managing the database. Such detailed
discussions are beyond the scope of this Perspective, but we
included a list of external resources with the accompanying
examples.51 These resources include online tutorials on
installing and setting up SQL and No-SQL databases for a variety
of operating systems and articles on more abstract data struc-
tures for large datasets. Readers may also consult the accom-
panying interactive databases demonstrations.33
Queries

To access the data in a database, users must interact with it via
a direct transaction or a user interface called an application
programming interface (API). Some database soware contain
built-in API, and these are oen the most effective choice for
users new to databases and coding. However, if a user has even
minimal coding experience, the easiest way to interact with
a database is through a direct transaction. A one-line query can
search, lter, and transform data however the user might desire.

A basic query contains two parts: selection and projection.
The selection portion lters the data record(s) (rows for SQL,
documents for No-SQL) that will be returned. The projection
species the record attribute(s) (columns for SQL, elds for No-
SQL) that will be shown. For example, imagine a researcher
wants to know the SMILES strings34 for all molecules in a data-
base that have a molecular weight of more than 100 g mol−1.
The selection would stipulate only data records with a molec-
ular weight greater than 100 g mol−1, while the projection
would specify the return of the SMILES attribute (Fig. 5).
Alternatively, the researcher might like to list the lowest-lying
excited state energy for every molecule or nd and count all
molecules with more than ten atoms. Basic queries like this are
quick and easy in both SQL and No-SQL databases, even when
tens of thousands of molecules are present.

Let us return to the multi-faceted analyses involving the UV-
Vis rst singlet excited state energies and computational
modeling: (1) comparing the experimental and computed
absorption energies and (2) plotting the absorption spectrum
for only molecules where the rst absorption is greater than
4 eV. Again, straightforward one-line queries can gather the data
for these analyses. Subsequently, a couple of lines of code can
produce analysis plots. Fig. 6 demonstrates the query and
plotting steps or each of these examples, depicting the resulting
plots; full code is available in the accompanying resource.33

Most importantly, these queries and plotting are readily
repeated. The next time our researcher runs a set of experi-
ments, the entire analysis occurs with the push of a button.
Database longevity

Aer database construction, designers must consider database
backups. Regular and reliable database backups are essential
for an effective database because it is not a matter of if some-
thing will go wrong with the database but when. Modern data-
bases are vulnerable to failures ranging from hardware
malfunctions to ransomware attacks to human error. But
Chem. Sci., 2022, 13, 13646–13656 | 13651
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Fig. 5 (A) Depiction of the selection and projection components of a database query along with (B) the format of basic queries in SQL-structured
and No-SQL-structured databases and (C) example queries in each database type. Note that example No-SQL queries use the MongoDB query
format because there is no standard No-SQL query language.
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consistent and reliable backups can ward off the potentially
catastrophic effects of these failures.

There are four types of database backup: full, incremental,
delta, and logs. Successful databases oen use all four types. As
the name suggests, a full backup duplicates the entire database
for storage. While thorough, these backups require signicant
storage space, oen too much to perform more than once every
week or two. Incremental backups, on the other hand, duplicate
storage for all database records that have changed since the last
full backup. Similarly, delta backups record the transactional
changes since the last backup of any kind. These three backup
techniques constitute most database backup systems. The nal
backup type is less a backup than an emergency record. Logs are
the systematic record of every database transaction. Theoreti-
cally, a database can be rebuilt by rerunning every transaction
that has occurred from the logs. However, this method is
neither dependable nor efficient. Because the log les grow
quickly, the log history is frequently wiped clean.

Regardless of the specic backup plan designed, the most
important part is redundancy. While database design tries to
avoid redundancies, database backup plans should incorporate
redundancies wherever possible. Save multiple full backups,
saved on multiple servers, ideally on multiple networks.
Challenges

In 2017, The Minerals, Metals & Materials Society (TMS) issued
a report cataloging challenges with building effective materials
13652 | Chem. Sci., 2022, 13, 13646–13656
data infrastructures.52 Many challenges centered on the com-
munity's minimal understanding of data storage and manage-
ment options and associated best practices, a problem this
Perspective seeks to address.53 One of the most high-impact
challenges identied was the lack of developed, agreed-upon
data schemas. As more domain-specic databases emerge,
challenges arise in the interaction of databases with various
users and other databases.54–56 To effectively share data across
labs and data platforms, there must be some degree of agree-
ment between the data representation, terminology, and
formats. A key rst step in developing universal schemas is
educating all members of the scientic community about
domain-specic ontologies, which are the fundamental cate-
gorization of objects and the denition of relationships
between the categories.57–59 This will enable scientists' contri-
butions to the philosophical endeavor to develop universal
ontologies that can lay the foundation for a universal schema.
Yet, to establish standard ontologies, scientists must rst
engage in their design.

The second challenge in database development is the cura-
tion of gathered data. As the adage goes, “garbage in, garbage
out.” If inconsistent, incorrect, or outlier data enters a database,
the data analytics performed on that data will produce spurious
insights. Too oen, the best method for data curation remains
human gut checks. It is much easier for a human expert than
a computer to identify a suspicious peak in an NMR spectrum.
At this point, database curation must continue to integrate
human data checks to curate incoming data. However, as the
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Queries and plots for comparing singlet excitation and experimental optical gap (left) and plotting the spectrum of only molecules where
the singlet excitation is greater than 4 eV (right).
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quantity of data grows, efforts to automate data curation must
follow suit.

The extraction of data from raw data les presents additional
challenges. For example, different brands of instruments may
produce distinctly formatted output les. Each le will require
an individualized parser to extract necessary data. Moreover,
some instrument output les do not contain all relevant data, so
additional metadata such as molecule concentration, solvent
type, and even procedural details must be gathered.

Finally, as more domain-specic databases emerge, chal-
lenges will arise in the interaction of databases with various
users and other databases. To abide by the FAIR principles, data
must be accessible and searchable in an interoperable format.21

An API is the most useful tool for human–database interaction.
Additionally, to enable data machine-accessibility, databases
should incorporate a representational state transfer API (REST
API), which presents data for online sharing according to REST
internet standards. Unfortunately, if not included in the data-
base soware, API and REST API require time and expertise to
develop. To circumnavigate these issues, there do exist powerful
scientic data-sharing platforms which include API and/or
REST API capabilities.54,55,60–63
Conclusions and outlook

As chemistry enters the “fourth paradigm” of scientic
discovery, it will be essential to effectively store and manage
data. Such efforts will not only enable the use of big data
analytics and machine learning but also establish the data
© 2022 The Author(s). Published by the Royal Society of Chemistry
management framework needed to integrate robotic/
autonomous experimentation into laboratories. While there
remain challenges in constructing and maintaining a DBMS,
storage efficiency, query speeds, and ability to abide by FAIR
data principles are unparalleled in DBMS when compared to
le-based systems. Therefore, we encourage all chemistry
laboratories to explore DBMS. At a minimum, we encourage
laboratories to upload data to existing data databases, such as
large-scale repositories and eld-specic mid-sized databases,
many of which are cataloged in database listings.54,55,61–67

Still, the growing data demands of many laboratories will
necessitate small-scale laboratory databases. Fortunately, there
are many tools available. For those wishing to design a database
from the ground up, the soware and designs described in this
Perspective provide powerful tools for data management.
Meanwhile, for those seeking less intensive data management
platforms, pre-built data storage structures exist, allowing users
to customize a data schema while providing an API and
graphical tools for data analysis.55,68–70 Ultimately, the transition
from le-based data management to DBMS will take many
forms across many elds. We hope that the introduction to
database terminology and structures provided here will guide
chemists through the process of database design.
Data availability

The data and the code presented in this article are available on
the GitHub repository at https://github.com/D3TaLES/
databases_demo. This repository contains simple, chemistry-
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based demonstrations of both an SQL and a No-SQL database
structure and experimental le parsing. The repository also
contains a list of external resources that give more specic
details for setting up a database.
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