Issue 10, 2023

In situ synthesis of gold nanoclusters in hydrogels for the capillary based portable fluorescence analysis of hypochlorite in environmental samples

Abstract

Bovine serum albumin (BSA) reduced HAuCl4 under alkaline conditions to achieve the rapid in situ growth of gold nanoclusters (Au NCs) in hydrogels. The hydrogels doped with BSA and HAuCl4 could not only provide reaction sites for the growth of Au NCs but could also precisely regulate the in situ growth process of the Au NCs. The hydrogel-based synthesis route displayed high repeatability, easy operation, and intriguing anti-interference performance, contributing to the establishment of comparable sensing applications. Hydroxide ions could diffuse from aqueous solutions to the inter-sides of the hydrogels, facilitating the reducibility of BSA and formation of BSA-protected Au NCs. Consequently, strong red fluorescence was detected in the hydrogels, including fluorescence changes in the hydrogels in the presence of hypochlorite (ClO). It was concluded that a small amount of strong oxidizing agent ClO could promote the free sulfhydryl groups of BSA to transform into disulfide bonds, and then the proteins aggregated together. The aggregation of BSA in hydrogels contributed to the high-efficiency formation of Au NCs and consequently the fluorescence of the Au NCs was enhanced. Nevertheless, in the presence of high-concentration ClO, the reducibility capacity of BSA was consumed, leading to a weakened fluorescence intensity at 650 nm; thus, the purple–red fluorescence signal of Au NCs correspondingly decreased and gradually turned to bluish fluorescence. The limit of detection was estimated to be 5.84 × 10−5 M. This phenomenon was used in glass capillary tubes to construct a portable, rapid, accurate device, which could monitor ClO by observation with the naked eye under UV irradiation.

Graphical abstract: In situ synthesis of gold nanoclusters in hydrogels for the capillary based portable fluorescence analysis of hypochlorite in environmental samples

Supplementary files

Article information

Article type
Paper
Submitted
19 Apr. 2023
Accepted
31 Aug. 2023
First published
05 Sept. 2023

Environ. Sci.: Nano, 2023,10, 2880-2889

In situ synthesis of gold nanoclusters in hydrogels for the capillary based portable fluorescence analysis of hypochlorite in environmental samples

C. Z. Peng, H. Zhang, N. Pi, X. Li, Q. Yang, H. L. Zou, H. Q. Luo, N. B. Li and B. L. Li, Environ. Sci.: Nano, 2023, 10, 2880 DOI: 10.1039/D3EN00247K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements