Volume 241, 2023

Polymorphs and solid solutions: materials with new luminescent properties obtained through mechanochemical transformation of dicyanoaurate(i) salts

Abstract

We report the use of mechano- and thermochemical methods to create new solid-state luminescent materials from well-known inorganic salts, potassium dicyanoaurate(I) KAu(CN)2, and potassium dicyanocuprate(I) KCu(CN)2. In particular, manual grinding or ball milling of commercial samples of KAu(CN)2 led to the formation of a novel polymorph of the salt, herein termed m-KAu(CN)2, evident by a significant change in color of the fluorescence emission of the solid material from orange to violet. The formation of m-KAu(CN)2 is reversible upon addition of small amounts of solvents, and powder X-ray diffraction analysis indicates that the structure of m-KAu(CN)2 might be related to that of pristine KAu(CN)2 through a change in ordering of Au(CN)2 ions in a layered structure. Thermal treatment of KAu(CN)2 led to the discovery of another polymorph of this well-known salt, herein termed t-KAu(CN)2, making KAu(CN)2 a rare example of a system in which thermochemical and mechanochemical treatments lead to the formation of different, in each case previously not reported, polymorphic forms. The thermally-induced transformation from KAu(CN)2 to t-KAu(CN)2 takes place around 250 °C and proceeds in a crystal-to-crystal fashion, which enabled the preliminary structural characterisation through single crystal X-ray diffraction, revealing the retention of the layered structure and a change in ordering of Au(CN)2 ions. Milling of the simple salt KAu(CN)2 in the presence of equimolar amounts or less of its copper(I)-based analogue coordination polymer KCu(CN)2 leads to the formation of a series of solid solution materials, isostructural to m-KAu(CN)2 and with visible fluorescence emission distinct from KCu(CN)2 or any herein investigated forms of KAu(CN)2.

Graphical abstract: Polymorphs and solid solutions: materials with new luminescent properties obtained through mechanochemical transformation of dicyanoaurate(i) salts

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
11 Jūl. 2022
Accepted
25 Jūl. 2022
First published
25 Jūl. 2022

Faraday Discuss., 2023,241, 425-447

Polymorphs and solid solutions: materials with new luminescent properties obtained through mechanochemical transformation of dicyanoaurate(I) salts

J. Vainauskas, F. Topić, M. Arhangelskis, H. M. Titi and T. Friščić, Faraday Discuss., 2023, 241, 425 DOI: 10.1039/D2FD00134A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements