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Interface design of SARS-CoV-2 symmetrical
nsp7 dimer and machine learning-guided nsp7
sequence prediction reveals physicochemical
properties and hotspots for nsp7 stability,
adaptation, and therapeutic design†

Amar Jeet Yadav, Shivank Kumar, Shweata Maurya, Khushboo Bhagat
and Aditya K. Padhi *

The COVID-19 pandemic, driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

necessitates a profound understanding of the virus and its lifecycle. As an RNA virus with high mutation

rates, SARS-CoV-2 exhibits genetic variability leading to the emergence of variants with potential

implications. Among its key proteins, the RNA-dependent RNA polymerase (RdRp) is pivotal for viral

replication. Notably, RdRp forms dimers via non-structural protein (nsp) subunits, particularly nsp7, crucial for

efficient viral RNA copying. Similar to the main protease (Mpro) of SARS-CoV-2, there is a possibility that the

nsp7 might also undergo mutational selection events to generate more stable and adaptable versions of

nsp7 dimer during virus evolution. However, efforts to obtain such cohesive and comprehensive information

are lacking. To address this, we performed this study focused on deciphering the molecular intricacies of

nsp7 dimerization using a multifaceted approach. Leveraging computational protein design (CPD), machine

learning (ML), AlphaFold v2.0-based structural analysis, and several related computational approaches, we

aimed to identify critical residues and mutations influencing nsp7 dimer stability and adaptation. Our

methodology involved identifying potential hotspot residues within the dimeric nsp7 interface using an

interface-based CPD approach. Through Rosetta-based symmetrical protein design, we designed and

modulated nsp7 dimerization, considering selected interface residues. Analysis of physicochemical features

revealed acceptable structural changes and several structural and residue-specific insights emphasizing the

intricate nature of such protein–protein complexes. Our ML models, particularly the random forest regressor

(RFR), accurately predicted binding affinities and ML-guided sequence predictions corroborated CPD

findings, elucidating potential nsp7 mutations and their impact on binding affinity. Validation against clinical

sequencing data demonstrated the predictive accuracy of our approach. Moreover, AlphaFold v2.0 structural

analyses validated optimal dimeric configurations of affinity-enhancing designs, affirming methodological

precision. Affinity-enhancing designs exhibited favourable energetics and higher binding affinity as compared

to their counterparts. The obtained physicochemical properties, molecular interactions, and sequence

predictions advance our understanding of SARS-CoV-2 evolution and inform potential avenues for

therapeutic intervention against COVID-19.

Introduction

The ongoing COVID-19 pandemic, caused by SARS-CoV-2, has
posed an exemplary worldwide dilemma, demanding a

comprehensive understanding of the virus, its components,
and its life cycle for effective prevention and control.1,2 SARS-
CoV-2, belonging to the Coronaviridae family, is an enveloped,
positive-sense, single-stranded RNA virus with the largest gen-
ome among known RNA viruses.3 The genome of SARS-CoV-2 is
approximately 30 kilobases in length and encodes numerous
proteins involved in viral replication, transcription, host inter-
action, and immune evasion.4 Key structural proteins include
spike (S), envelope (E), membrane (M), and nucleocapsid (N)
proteins.5 Several non-structural proteins also play key roles in
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regulating the immune system and viral replication.6 In
addition to the structural components, non-structural proteins,
and accessory proteins, SARS-CoV-2 has a positive-sense,
single-stranded RNA genome, making it unique among
coronaviruses.7

SARS-CoV-2, like all RNA viruses, exhibits genetic variability
due to its high mutation rate.8 This genetic diversity has given
rise to various SARS-CoV-2 lineages and variants, some of which
have garnered substantial attention due to their potential
impact on transmissibility, severity, vaccine effectiveness, and
diagnostic accuracy.9 Variants such as alpha, beta, gamma,
delta, omicron and recently identified sub-variants like JN.1
have specific mutations in the spike protein and other regions
of the genome, which have raised concerns about their ability
to evade immunity, influence viral replication, and alter the
course of the pandemic.10 These variants mostly emerged from
mutations in the intracellular proteins of SARS-CoV-2, and to
fully grasp the impact of these variants, it is crucial to investi-
gate the molecular mechanisms that underpin viral replication,
immune evasion, and pathogenesis.11 This examination is
particularly relevant for intracellular proteins, as they play a
pivotal role in the lifecycle of the virus and its interactions with
host cells.12,13

Among the intracellular proteins, RdRp is a key player in the
viral life cycle, which serves as the primary enzyme responsible
for replicating the viral genome.14 It catalyzes the formation of
negative-sense RNA strands from positive-sense RNA templates,
a critical step in viral replication.15 The high fidelity and activity
of RdRp are critical for ensuring viral genome integrity and
efficient replication.16 The molecular intricacies of RdRp and
the dimerization of non-structural protein (nsp) subunits hold
the key to deciphering viral replication mechanisms and
exploring therapeutic interventions.17 One of the intriguing
aspects of RdRp is its ability to form dimers (via its nsp7
subunits), which is essential for its functionality in SARS-CoV-
2.18 RdRp dimerization is a complex and tightly regulated
process that involves interactions with nsp subunits, particu-
larly nsp7 and nsp8.19 The dimeric RdRp, in its antiparallel
arrangement, plays a crucial role in governing the processivity
of the enzyme and efficiency in copying the viral RNA.20 While
much research has focused on RdRp as an individual entity and
targeting it, the molecular mechanisms and structural basis of
RdRp dimerization, specifically the nsp subunits, are an emer-
ging area of interest, holding the potential to unveil new
antiviral strategies and therapeutic targets.14

In our recent studies, we harnessed the power of high-
throughput protein design methodologies to pinpoint critical
residues and mutations within intracellular proteins including
main protease (Mpro), RdRp, and spike protein receptor binding
domain (RBD) of SARS-CoV-2, which could make the virus more
tolerant and adaptable to antiviral drugs such as remdesivir,
molnupiravir, favipiravir, nirmatrelvir and bebtelovimab.21–26

While conducting this research, we found that mutational and
residue-specific changes can induce relative stabilities and
adaptability of the RdRp, for instance, the nsp7 by forming
symmetrical dimers.20 This realization prompted us to perform

an extensive protein design and ML-based endeavour, which
was further complemented by a comprehensive multi-
parametric analysis.27 To obtain these insights for the dimeric
RdRp formed via the nsp7 subunits, we employed a unique
protein design approach, followed by evaluation of various
physicochemical features, comparative analysis against
clinical sequencing data, ML-guided binding affinity, and
nsp7 sequence prediction, and rigorous structural validation
through the utilization of AlphaFold v2.0.28 This concerted
effort led us to discern the specific hotspot residues within
the dimeric RdRp of the virus that display a heightened
proclivity towards stability, adaptation, and improved
fitness.20

Materials and methods
Identification of interface residues in nsp7

The electron microscopic structure of the dimeric form of
SARS-CoV-2 RdRp in complex with nsp7 : nsp8 : nsp12 : primer
dsRNA (PDB ID: 7OYG) was utilized to obtain detailed informa-
tion on nsp7–nsp7 dimerization and its interface residues. The
RdRp dimer structure in its antiparallel arrangement, pos-
sesses one copy of nsp8 each and dimerizes via the nsp7
subunits.20 This analysis identified 30 nsp7 residues that are
part of the dimeric interface and helped in its dimerization.
Following this, the structure was used for the interface-based
symmetrical protein design.

Interface-based symmetrical dimer design of nsp7

The structure was first energy-minimized and refined using
Rosetta’s relax protocol. Multiple structures were generated
during this step to identify the lowest-energy structure. A
symmetry definition file was created using the lowest-energy
dimeric structure of nsp7. The relaxed structure was then used
as an input for designing the nsp7 interface residues involved
in the dimerization of nsp7.29–31 Incorporating backbone flex-
ibility, the Rosetta macromolecular modeling suite was applied
to redesign the interface residues of the nsp7 dimer. In this
step, the 30 interfacial residues of nsp7 dimer were designed
with selected single nucleotide polymorphisms (SNPs).32 A
modified Rosetta script with backbone flexibility of nsp7 was
considered while designing in addition to the Monte-Carlo
simulated annealing and the Rosetta all-atom force field model.
The dimeric interface of nsp7 residues was studied for potential
hotspots that could change to allow for a stronger and more
stable nsp7 dimer and their adaptation. From the design
experiment, a total of 100 000 dimeric designs of nsp7 were
generated. The Rosetta total score, root mean square deviation
(RMSD), Rosetta interface DDG (illustrating the binding affi-
nities between the two designed symmetrical nsp7 monomers),
and the sequence identities (%) of the designs from the native
nsp7 were examined to comprehend the physicochemical
features, the impact of mutations on nsp7 dimerization
potential, and the overall stability of RdRp.32,33 The superpose
(CCP4: Supported Program), MayaChemTools, and ViroBLAST
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packages were used to calculate RMSD, FASTA sequence of
nsp7 designs, and sequence identities of all 100 000 designs
against the native nsp7, respectively.

Validation of the interface-based design and ML-based results

To assess the accuracy of our design strategy, the favourable
mutations (resulting in enhanced binding affinity) obtained
from Rosetta were compared with the already reported SARS-
CoV-2 RdRp–nsp7 mutations reported in the CoV-GLUE
database.34,35 The frequency of mutations (at different min.
proportion values of 0, 0.0001, 0.001, 0.01, 0.1, 0.25 0.5, 0.75,
0.95, and 1.0) were compared with nsp7 designs to assess the
precision of our design method. Heat maps were generated
using the heat mapper server,36 which shows the mutations at
the interface and their frequencies obtained from CoV-GLUE.

To validate our ML-based predictions, an nsp7 mutant,
S25L, a known stabilizer of the supercomplex, was also con-
sidered. To assess the impact of the mutation on protein
stability, the MUpro server was utilized, which evaluates pro-
tein stability through three metrics: DDG (using a support
vector machine), confidence score (using a support vector
machine), and confidence score (using a neural network),
where scores can range from �1 to 1.37 In this case, a score
less than zero denotes a decrease in protein stability caused by
the mutation, whereas a score more than zero denotes an
increase in protein stability. Scores close to 1 represent higher
confidence in prediction.

Mutational landscape profiles of affinity-enhancing and
affinity-reducing designs

The mutational landscape profiles of the designed amino
acid residues in the top-scored affinity-enhancing and affinity-
reducing designs were extracted and plotted using WebLogo.38

This enabled us to obtain and visually represent the types and
frequencies of the nsp7-designed amino acid residues. Further,
this information helped us to analyze the designed nsp7
protein mutants, their effect on stability, and the dimerization
of nsp7 and RdRp.

ML-based approaches to predict the binding affinities between
the monomers in the nsp7 designs

To extrapolate trends from the CPD-generated dataset, different
ML algorithms were employed. Further, to overcome the sole
reliance on structural information, we leveraged ML methodol-
ogies to predict nsp7 dimer stabilizing mutations by computing
the binding affinities between the nsp7 monomers. Initially,
the CPD-generated dataset was utilized, and features derived
from CPD—such as Rosetta total score, DDG (binding affinity),
sequence identity, mutation positions, and mutated amino
acids—were selected. Post-data preprocessing, which involved
one hot encoding for converting categorical amino acid col-
umns into numeric ones, along with data visualization and
feature engineering, the dataset was split into training (80%,
80 000 data points) and test sets (20%, 20 000 data points). The
DDG and Rosetta total scores were designated as separate target
attributes for subsequent model construction. Following this,

RFR, XGBoost Regressor, and decision tree regressor were
utilized to evaluate their performances. The RFR (being the
top-performing algorithm in terms of accuracy as obtained in
our work and assessed through the R2 score and mean absolute
error) was subsequently used for model construction and
further analysis. Optimal parameters for the RFR were obtained
using ‘‘GridSearchCV.’’ To gauge the correlation between actual
(CPD-derived) and predicted (ML-derived) binding affinity,
the ‘‘cross_val_score’’ function was used with a CV value of
10, representing the mean of ten random cross-validation
observations. The R2 score was then utilized to calculate the
correlation between actual and predicted binding affinity,
where a score of 1 signifies perfect predictions and 0 indicates
imperfect predictions.

Here,

R2 ¼ 1� Sum squared regression SSRð Þ
Total sum of squares SSTð Þ

R ¼ 1�
P

yi � yj
� �2

P
yi � ykð Þ2

where yi are the actual target values, yj are the predicted target
values, and yk are the mean values of actual target values.

ML-based approach for predicting nsp7 sequences that
enhance or reduce the binding affinity between nsp7
monomers

After utilizing the CPD results to predict affinity, we adopted a
reverse approach to predict nsp7 sequences that may enhance
or reduce the binding affinity between the nsp7 monomers
based on affinity values generated using the CPD approach. To
obtain the nsp7 sequences, ‘multiclass-multioutput classifica-
tion’ was utilized, which is a classification task that assigns
each sample a set of non-binary properties. Thus, in this case,
both the number of properties (positions) and the number of
classes (sampled amino acids) per property exceed 2. In
the multiclass-multioutput classification model, the RFR
was utilized. Given the 30 specific mutation positions for
which CPD data were generated, our model encompassed
30 targets. Each target involved various classifications of amino
acids that potentially serve as mutations of native residues.
The input features for this prediction task were the Rosetta
total score or DDG (binding affinity). Based on these features,
mutations and eventually the nsp7 sequences at 30 different
positions were predicted, thereby generating the diverse
sequences.

Intermolecular interactions between the top-scored affinity-
enhancing and affinity-reducing nsp7 designs

Arpeggio and PRODIGY were utilized to calculate the intermo-
lecular interactions between the top-scored affinity-enhancing
and affinity-reducing nsp7 designs.39,40 Various types of inter-
actions and energies were obtained from this analysis, indicat-
ing how they modulate the strength and binding of the nsp7
dimers.
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Structure prediction and modeling of the affinity-enhancing
and affinity-reducing nsp7 designs using AlphaFold v2.0

To assess the performance of the ML-based predictions, the
sequences predicted to enhance and reduce the binding affinity
by the ML model were used as input for the structure prediction
program AlphaFold v2.0.28 Specifically, the designed symmetric
nsp7 of RdRp intended for affinity enhancement and reduction
as predicted from the ML-based model was subjected to struc-
ture prediction (in their dimeric state) using the run_docker.py
python script. Each affinity-enhancing and affinity-reducing
sequence yielded five models, and the top-ranked structure
from each of them was subjected to further analysis based on
confidence and the predicted local distance difference test
(pLDDT) scores.

Normal mode analysis of the dimeric structures of wild-type
nsp7, affinity-enhancing, and affinity-reducing designs

Normal mode analysis (NMA) was performed on the dimeric
configurations of wild-type nsp7, as well as affinity-enhancing
and affinity-reducing designs, employing the iMODS server.41

This analysis aimed to discern internal coordinates, collective
protein motions, and possible conformational alterations,
thereby aiding in the evaluation of protein stability. Subse-
quently, a comprehensive investigation into protein dynamics

was undertaken, encompassing the computation of main-chain
deformability fluctuation maps, eigenvalues, and correlation
matrices. Here, the elastic network model (ENM) was also
employed to elucidate the stability of the protein.

Results
Analysis of dimeric nsp7 interface residues for design

By examining the electron microscopic structure of the dimeric
form of SARS-CoV-2 RdRp complexed with nsp7 : nsp8 : nsp12
with dsRNA primers, specific amino acid residues involved in
the dimeric interface of nsp7 were identified (Fig. 1A and B). A
total of 30 residues within the dimeric nsp7 interface were
identified for further analysis (Fig. 1C). These residues were
subjected to interface-based symmetrical protein design by
sampling with specific SNPs (Table 1).

Interface-based design of symmetrical nsp7 dimer and analysis
of various physicochemical features

A Rosetta-based symmetrical protein design was carried out to
generate dimeric nsp7 designs of the RdRp. The purpose of this
design strategy was to identify the hotspot residues of nsp7
important for modulating the dimerization and the physico-
chemical properties and to comprehend the stability and

Fig. 1 Structure of the dimeric form of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) complex. (A) The cryo-EM structure of the dimeric
form of SARS-CoV-2 RdRp in complex with nsp12 : nsp7 : nsp8 : dsRNA and zinc ion is shown, where each subunit is shown as a cartoon in different
colours. (B) and (C) The dimeric structure of the nsp7 subunit is shown as a cartoon and the interactions formed by the interface residues are shown and
labelled as sticks (with one-letter amino acid codes). The yellow colour dotted line represents the polar contacts between and within the chains.
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adaptation of nsp7 dimer in the RdRp. For design, 30 residues
of dimeric nsp7 were selected, each of which was mutated and
sampled with other amino acids that naturally occur more
frequently during the evolution of proteins (Table 1).

First, we analyzed the Rosetta total score vs. the RMSDs of
the designs as compared to the native nsp7 dimer. It was found
that, in the distribution of the Rosetta total score, RMSD ranged
from 0.66 to 3.33 Å. This demonstrated that over half of the

designs retained RMSDs in the range of 1 Å to 2 Å (Fig. 2A). It
was observed that, in such intricate small protein–protein
complexes, acceptable structural changes can occur during
the design of the 30 residues of the nsp7 and with the
introduction of mutations (Fig. 2A). Here, the weighted sum
of various energy terms, such as van der Waals interactions,
electrostatics, and other statistical variables, is represented by
the Rosetta total score. Furthermore, we conducted a control

Table 1 The nsp7 interface residues that are designed with corresponding SNPs of the native nsp7 sequence. A limited number of amino acids for each
position were sampled in the design experiments because they are more likely to evolve naturally than the others

S. no. Designed native nsp7 residues Sampled SNPs in designs S. no. Designed native nsp7 residues Sampled SNPs in designs

1 Ser1 ACLFPTWY 16 Ser25 ACLFPTWY
2 Lys2 RNQEIMT 17 Ser26 ACLFPTWY
3 Ser4 ACLFPTWY 18 Lys27 RNQEIMT
4 Asp5 ANEGHYV 19 Trp29 RCGLS
5 Lys7 RNQEIMT 20 Val33 ADEGILMF
6 Cys8 RGFSWY 21 His36 RNDQLPY
7 Thr9 ARNIKMPS 22 Asn37 DHIKSTY
8 Val11 ADEGILMF 23 Leu40 RQHIFPSWV
9 Val12 ADEGILMF 24 Phe49 CILSYV
10 Leu13 RQHIFPSWV 25 Glu50 ADQGKV
11 Leu14 RQHIFPSWV 26 Met52 RILKTV
12 Ser15 ACLFPTWY 27 Val53 ADEGILMF
13 Gln18 REHLKP 28 Leu56 RQHIFPSWV
14 Glu23 ADQGKV 29 Leu59 RQHIFPSWV
15 Ser24 ACLFPTWY 30 Leu60 RQHIFPSWV

Fig. 2 Physicochemical properties derived from the interface-based symmetrical dimer design of nsp7. (A) Rosetta total score vs. RMSD of all the
obtained designs of the dimeric nsp7 is displayed. (B) Rosetta total score vs. percentage sequence identity of all the designs of the dimeric nsp7 subunit is
shown. (C) Rosetta total score vs. DDG of all the nsp7 designs is depicted. (D) RMSD vs. percentage sequence identity of nsp7 designs is displayed.
(E) Percentage sequence identity vs. DDG of all nsp7 designs is shown. (F) DDG vs. RMSD of all the nsp7 designs is displayed. Here, the designed nsp7
dimers revealed that over half of the designs maintained structural changes within the 1–2 Å RMSD range. Sequence identities ranged from 50.94% to
66.66%, and affinity-enhancing designs exhibited lower Rosetta total scores and higher binding affinities. The RMSDs of these designs correlated with
both sequence identity and DDG, suggesting that hotspot residues are crucial. Affinity-enhancing designs predominantly displayed RMSDs between 1 and
2 Å, indicating stabilized interactions due to favourable mutations.
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run where only repacking was performed on the 30 residues of
nsp7. As a result, we were able to distinguish between affinity-
enhancing and affinity-reducing designs. Due to the occurrence of
a few unfavourable mutations, some affinity-reducing designs had
RMSDs 4 3 Å (Fig. 2A). Second, we compared the Rosetta total
score with the sequence identities of all the designs. It was found
that all the designs exhibited sequence identities in the range of
50.94–66.66% compared to the native nsp7 (Fig. 2B). Even though
merely 25 to 30 residues were designed that form the dimeric
interface, only a small number of hotspot residues were suscep-
tible to sequence alterations (Fig. 2B).

Third, the designs were analyzed for DDG vs. the Rosetta
total score. It was observed that the affinity-enhancing designs
showed higher binding affinity and lower Rosetta total scores as
compared to the affinity-reducing designs (Fig. 2C). This
implies that favourable mutations positively influence the
energetics, binding interface, and Rosetta total scores in the
affinity-enhancing designs. Next, the RMSDs of the designs
were plotted against the percentage sequence identity scores. It
was found that, in the designs with the varying RMSDs from
0.66 to 3.33 Å, the percentage sequence identity also varied
from 50.94% to 66.66% (Fig. 2D). Next, the DDG values of the
generated designs were compared with their sequence identities,
which indicated that designs with higher binding affinity have a
relatively higher percentage sequence identity, indicating that
only a few of the 30 interfacial residues designed for nsp7 are
sufficient and probably the hotspot residues susceptible to muta-
tion (Fig. 2E). Compared to the native nsp7, the CPD designs
retained DDG in the range of �3.42 to �15.32 kcal mol�1 and
sequence identity of 50.94% to 66.66% (Fig. 2E). Finally, we
evaluated the RMSD vs. DDG for all the designs. We observed
that the majority of the affinity-enhancing designs displayed
RMSDs between 1.0 and 2.0 Å, suggesting that the associated
mutations stabilized the interactions (Fig. 2F).

Validation of the interface-based symmetrical nsp7 design
approach

To examine and confirm the accuracy of our symmetric dimer
design approach, a computational control analysis was carried
out, where the designed mutations that enhance the binding
affinity, stability, and hence the dimerization ability of the nsp7
were compared to the clinically reported nsp7 mutations of
SARS-CoV-2 in the CoV-GLUE database. A comparison is con-
ducted between the prevalence of mutations obtained from the
patients and that of the nsp7 designs to reflect upon the design
accuracy.

Based on the comparison, it was found that 62 out of the 235
mutations were positively selected and likely to result in stable
dimers, yielding a 26.38% correlation and matching with the
sequencing data (nsp7 sequences were retrieved from CoV-
GLUE on 02 April 2024) (Fig. 3). Several high-frequency muta-
tions, including K2T, V11L, and V11E, were already found to be
favourable in our design computations (Fig. 3). Moreover, using
the MinProp cut-off of 0.0001, one mutation out of 7 was
predicted to be adaptive and positively selected to form stable
nsp7 dimers in our design computations, thereby resulting in

B14.28% correlation and matching with the clinically available
data (Fig. S1, ESI†). As more sequencing data become available,
other mutations from different populations will likely appear in
addition to those sampled from our designs, thereby increasing
the correlation. Therefore, this control investigation supported
our design strategy and we highlighted the mutations that
might serve an essential part in the adaptation and generation
of high-affinity and stable nsp7 dimers.

Subsequently, we conducted a validation of our ML-based
approach and its outcomes through a case study involving the
S25L mutant of nsp7, known for its purported role in strength-
ening the RdRp–nsp7–nsp8 supercomplex. Previous studies
have highlighted the significance of Ser25 and Ser26 residues
in the nsp7 subunit for stabilizing the supercomplex, specifi-
cally the S25L mutation, which enhances surface complemen-
tarity by 10%, thus contributing to supercomplex stability.42

Our ML-based predictions also identified an nsp7 sequence
harbouring the S25L mutation, indicating potential enhanced
stability for the nsp7 dimer. To independently verify this
prediction, we employed the MUpro server,37 assessing protein
stability through three metrics: DDG (support vector machine),
confidence score (support vector machine), and confidence
score (neural network). The results indicated DDG and confi-
dence score (from SVM and neural network) to be 0.46, 0.88,
and 0.83, respectively, thereby consistently supporting our ML-
based prediction, and confirming that the S25L mutation
augments protein stability (Table 2).

Analysis of the mutational landscape profile and sequence
variation in nsp7 dimeric designs

To gain further insights into the key differences in the types
and frequencies of residues between affinity-enhancing and
affinity-reducing designs, we compared the designs with each
other. We analyzed the mutational landscape profiles of the
designed amino acids and plotted their types and frequencies
for the affinity-enhancing and affinity-reducing designs (hun-
dred from each). The top-scored affinity-enhancing and affinity-
reducing designs were analyzed based on the DDG values and
compared for their differences in resulting mutated amino
acids and hence their sequence variations (Fig. 4). This analysis
showed that certain nsp7 residues such as 4(Asp5), 8(Val11),
12(Ser15), 14(Glu23), 16(Ser25), 17(Ser26), 19(Trp29), 20(Val33),
21(His36), 23(Leu40), 29(Leu59), and 30(Leu60) acquired muta-
tions with a variety of different residues (Fig. 4). Additionally, a
few residues were sampled with nearly similar residues, includ-
ing those at positions 11(Leu14) and 25(Glu50) (Fig. 4). More-
over, all other residues were sampled nearly identical in both
affinity-enhancing and affinity-reducing designs (Fig. 4).
Through these analyses, the nsp7 hotspot residues that have
the propensity to produce stable dimeric nsp7 were identified.

ML-based approaches for predicting binding affinities between
the monomers of the nsp7 designs

One of the primary objectives of this study was to employ a
robust ML-based approach to predict the binding affinity
between the nsp7 monomers in the dimeric nsp7 designs of
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SARS-CoV-2. This approach aimed to enhance our understand-
ing of favourable mutations at the nsp7 dimeric interface,
contributing to the stabilization of nsp7. The predictions were
evaluated against CPD results, assessing their accuracy and

efficiency compared to standalone CPD methods. Among the
three algorithms tested, the RFR was selected due to its super-
ior accuracy (measured by the R2 score and mean absolute
error). The analysis involved features like the Rosetta total

Fig. 3 Heat map displaying nsp7 mutations and their frequencies at the dimeric nsp7 interface, derived from the CoV-GLUE database. The SARS-CoV-2
nsp7 mutations derived from the CoV-GLUE database are shown. In this illustration, the frequencies of the mutations among COVID-19 patients ranging
from low to high numbers are represented using green-to-white-to-pink colours. The mutations that strengthened the dimeric nsp7 and that are derived
from the CPD approach are represented with a box adjacent to the mutants. 62 mutations out of 235 were predicted to be adaptive and positively
selected to form stable nsp7 dimers in our design computations, thereby resulting in B26.38% correlation and matching with the clinically available data.

Table 2 The effect of the S25L mutation on the stability of nsp7 protein as obtained from MUpro. The sequences are shown below and the native to
mutated residues (S25 and L25) are underlined and shown in bold, respectively

S. no. nsp7 sequence
Single point
mutation

DDG
(using SVM)

Confidence score
(using SVM)

Confidence score
(using neural
network) Protein stability

1 SKMSDVKCTSVVLLSVLQQL
RVES�SSKLWAQCVQLHNDILLAKDTTEA
FEKMVSLLSVLSM

No mutation — — — —

2 STMAEVRRASIESITVLLQLRVKT
�LPELGAQCLQLNID
IMLAKDTTEACAKTLSLVSVMVSM

28 mutations +
S25L mutation

0.46 0.88 0.83 Increase protein stability
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score, DDG, sequence identity, mutation positions, and altered
amino acids. The RFR prediction model exhibited a high
correlation compared to other models. In the distribution plot
for the Rosetta total score and DDG, it was observed that the
majority of designs clustered between Rosetta total scores of
�360 and �370 REU and �7 and �9 kcal mol�1 DDG, respec-
tively (Fig. 5A and B). The obtained R2 score of 0.80 and mean
absolute error (MAE) of 3.4 between actual (CPD-derived) and
predicted Rosetta total scores, along with an R2 score of 0.70
and a MAE of 0.52 between actual and predicted DDG with 10-
fold cross-validation, highlighted the accuracy of our model
(Fig. 5C and D). These findings validate the precision and
reliability of our predictive model.

ML-based sequence prediction yielding affinity-enhancing and
affinity-reducing nsp7 designs

Next, to predict the nsp7 sequences harbouring mutations and
to classify them as affinity-enhancing and affinity-reducing
groups, an ML-based approach was utilized that relies on
DDG (binding affinities) generated through CPD. The input
for this process consisted of the Rosetta total score or DDG,
which eventually predicted mutations at 30 distinct positions
and subsequently generated the diverse nsp7 sequences (Fig. 6
and Tables S1, S2, ESI†). Our multiclass-multioutput classifica-
tion model utilized an RFR. The integration of ML and CPD
affirmed that affinity-enhancing designs exhibit a higher DDG
compared to affinity-reducing designs. The predicted
sequences were then juxtaposed with the native nsp7, and the
resulting comparisons including DDG, % sequence similarity,

and RMSD of affinity-enhancing and affinity-reducing nsp7
designs were derived as shown in Tables 3 and 4.

Interactions between the top-scored affinity-enhancing and
affinity-reducing nsp7 designs

The intermolecular interactions and energetics between the
top-scored affinity-enhancing and affinity-reducing nsp7
designs (as derived from CPD) were evaluated using Arpeggio
and PRODIGY. In the design experiments, the affinity-
enhancing design exhibited a greater number of interactions
(primarily due to van der Waals interactions, hydrogen
bonds, hydrophobic interactions, and proximal and carbonyl
interactions) as compared to the affinity-reducing design
(Table 5). Next, various types of intermolecular contacts, the
number of charged and polar, apolar contacts, binding
affinity, and disassociation constants were calculated between
the top-scored affinity-enhancing and affinity-reducing nsp7
designs using PRODIGY. It was observed that the affinity-
enhancing design retained a higher number of intermolecular
interactions, a greater number of contacts such as charged–
charged contacts, charged–polar contacts, charged–apolar con-
tacts, polar–polar contacts, and therefore significantly higher
binding affinity as compared to affinity-reducing design
(Table 6).

Further, intermolecular contacts and binding affinity were
obtained for eight different nsp7 sequences (four as affinity-
enhancing and four as affinity-reducing) predicted by the ML-
based approach. It was found that the affinity-enhancing
designs retained a higher number of intermolecular contacts

Fig. 4 Sequence logos illustrating the type and occurrence of sampled nsp7 interface residues. The sequence logo of the 100 top-scored affinity-
enhancing designs and affinity-reducing nsp7 designs are shown, where native nsp7 residues are mentioned in the bottom section. In each figure, the
nsp7 residues are shown on the X-axis and the Y-axis denotes the frequency of occurrence of each amino acid. The height of each symbol represents the
relative frequency of a specific amino acid at the given position. The residues with diverse sequence variations between the affinity-enhancing and
affinity-reducing designs are shown using red arrows and those exhibiting nearly similar residues are shown using purple arrows.
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and various types of interactions, thereby resulting in greater
binding affinity as compared to affinity-reducing designs
(Tables 7 and 8). For instance, while affinity-enhancing designs
had binding affinities ranging from�9.7 to�12 kcal mol�1, the

affinity-reducing designs could only show binding affinity ran-
ging from �6.5 to �7.7 kcal mol�1, thereby demonstrating a
key difference in binding affinity as a result of certain muta-
tions in the hotspots of nsp7.

Fig. 5 Assessment of the Rosetta total score and binding affinity correlation between CPD and ML for the nsp7 sequences. (A) and (B) Plots showing the
distribution of the Rosetta total score and DDG with their frequency for all the CPD designs, respectively. Most designs retained the Rosetta total score
centered around �370 REU and DDG around �8 kcal mol�1, respectively, in these distributions. (C) and (D) ML-predicted Rosetta total score vs. CPD-
derived actual Rosetta total score and ML-predicted DDG vs. CPD-derived DDG are shown as scatter plots, respectively. A correlation coefficient of 0.80
and 0.70 (marked by a red colour line) was obtained when taking the Rosetta total score and DDG as targets, respectively.

Fig. 6 Scheme for ML-based prediction of binding affinity and newer nsp7 sequence variations. A schematic figure showing the ML-based approach and
its steps that take various CPD-based features such as the Rosetta total score or DDG (binding affinity) as input for the model building, model assessment,
and predicting the nsp7 sequences having mutations and their corresponding DDG.

Table 3 ML-predicted nsp7 affinity-enhancing design sequences, their predicted DDG, % sequence similarity, and backbone RMSDs as compared to the
native nsp7 AlphaFold v2.0 predicted structure

S. no. ML predicted affinity-enhancing design sequences DDG (kcal mol�1)
Sequence
similarity (%) RMSD (Å)

1 STMAEVQRISFLMFLVLKQLRVDATPELGAQCLQLRIDIQLAKDTTEACQKTLSLVSVSISM �14 77.4 3.0
2 STMAEVRRASIESITVLLQLRVKTTPELGAQCLQLNIDIMLAKDTTEACAKTLSLVSVMVSM �13 80.6 2.6
3 SQMAEVIWASFLVSLVLKQLRVDATPELGAQCDQLQKDISLAKDTTEACQKLLSLVSVSVSM �13.5 77.4 4.4
4 STMAEVRRASEESSTVLRQLRVDTTPELGAQCAQLQKDIQLAKDTTEACQKTLSLISVSFSM �12.5 72.6 2.2
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Structural analysis of the ML-predicted affinity-enhancing and
affinity-reducing nsp7 designs

The structural evaluations of the ML-predicted affinity-enhancing
and affinity-reducing nsp7 designs were performed using Alpha-
Fold v2.0. After the model building of the sequences, the back-
bone RMSDs were calculated by superposing the obtained dimeric
structures with the wild-type nsp7 dimeric structure. This analysis
showed that the affinity-enhancing designs exhibited an optimal
dimeric and symmetric nsp7 configuration with RMSDs measur-
ing 2.2 Å, 2.6 Å, 3.0 Å, and 4.4 Å, as illustrated in Fig. 7A–D,
respectively. Conversely, the affinity-reducing designs displayed
higher RMSDs, ranging from 11.9 Å to 13.7 Å, as depicted in
Fig. 7G–J. Notably, in an affinity-enhancing design structure, one
of the nsp7 monomeric subunits demonstrated an appropriate
folded structure, but failed to maintain the overall dimeric
arrangement, resulting in an RMSD of 4.4 Å (Fig. 7D). Although
this affinity-enhancing design displayed an RMSD of 4.4 Å, this

value pales in comparison to the affinity-reducing designs, which
exhibited RMSDs ranging from 11 to 13 Å. This discrepancy
underscores the relatively higher RMSD observed for the enhan-
cing design, emphasizing its significance in our analysis. Further,
most models exhibited per residue pLDDT scores exceeding 90,
indicating a high level of accuracy in the affinity-enhancing
models as compared to affinity-reducing models (Fig. 7E, F, K
and L). These analyses substantiate the reliability and precision of
our dimeric nsp7 design approach.

Normal mode analysis of the dimeric structures of wild-type
nsp7, affinity-enhancing, and affinity-reducing designs

The NMA study, utilizing internal coordinates, unveiled protein
mobility, flexibility, collective motion, and potential conforma-
tional changes, aiding in assessing protein stability of the
dimeric wild-type nsp7, affinity-enhancing, and affinity-
reducing designs. Deformability highlights protein flexibility,
with peaks indicating flexible regions like hinges. The plot
comparing atom index vs. deformability values across normal
modes for dimeric wild-type nsp7, affinity-enhancing, and
affinity-reducing designs revealed heightened flexibility in the
affinity-enhancing design as compared to the wild-type and
affinity-reducing nsp7 designs (Fig. 8A). Next, the evaluation of
the correlation covariance matrix illustrated variations for the
dimeric nsp7 wild-type, as well as for the affinity-enhancing and
affinity-reducing designs (Fig. 8B–D). The colours blue, white,
and red were used to designate the anticorrelated, uncorre-
lated, and correlated states of atomic motion, respectively. The
black boxes in each plot depicted the localized variation in the
correlation between wild-type, affinity-enhancing, and affinity-

Table 4 ML-predicted nsp7 affinity-reducing design sequences, their predicted DDG, % sequence similarity, and backbone RMSDs as compared to the
native nsp7 AlphaFold v2.0 predicted structure

S. no. ML predicted affinity-reducing design sequences DDG (kcal mol�1) Sequence similarity (%) RMSD (Å)

1 STMTEVIRASIISFLVLLQLRVQATPELLAQCEQLNKDIILAKDTTEASQK �4 75.8 13.7
LISLVSVQSSM

2 STMTAVIRASILVFLVLLQLRVDTTPELGAQCLQLNIDIILAKDTTEASQK �5 77.4 13.27
LASLVSVQMSM

3 SQMAEVQWASFIIILVLLQLRVKATPELGAQCLQLNKDIILAKDTTEACQ �4.5 79.0 12.6
KTLSLSSVSFSM

4 STMTEVIRISILSFLVLKQLRVDTTPELGAQCEQLNKDIVLAKDTTEASQ �5.5 75.8 11.9
KTLSLSSVSMSM

Table 5 Intermolecular interactions obtained between the nsp7 mono-
mers for the affinity-enhancing and affinity-reducing designs (CPD-
derived) using Arpeggio

S. no. Types of interactions
Affinity-enhancing
design

Affinity-reducing
design

1 van der Waals interactions 17 5
2 vdW clash interactions 14 4
3 Proximal interactions 557 350
4 Polar contacts 21 8
5 Weak polar contacts 19 9
6 Hydrogen bonds 11 2
7 Weak hydrogen bonds 12 16
8 Hydrophobic contacts 56 51

Total number of contacts 588 359

Table 6 Intermolecular interactions obtained between the nsp7 monomers for the affinity-enhancing and affinity-reducing designs (CPD-derived)
using PRODIGY

S. no. Types of contacts Affinity-enhancing design Affinity-reducing design

1 No. of intermolecular contacts 53 38
2 No. of charged–charged contacts 6 0
3 No. of charged–polar contacts 10 2
4 No. of charged–apolar contacts 14 2
5 No. of polar–polar contacts 5 3
6 No. of apolar–polar contacts 8 9
7 No. of apolar–apolar contacts 10 22
8 Percentage of apolar NIS residues 40.00 51.92
9 Percentage of charged NIS residues 30.00 17.31
10 Predicted binding affinity (kcal mol�1) �7.1 �5.5
11 Predicted dissociation constant (M) at 25.0 1C 5.9 � 10�6 9.1 � 10�5
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reducing designs (Fig. 8B–D). Finally, the eigenvalue analysis
demonstrated significantly higher eigenvalues in the affinity-
enhancing design, suggesting enhanced localized motions
such as side-chain vibrations, as compared to the dimeric
wild-type nsp7 and affinity-reducing designs (Fig. S2, ESI†).

Discussion

The ongoing COVID-19 pandemic, caused by SARS-CoV-2,
underscores the need for comprehensive insights into the
components and life cycle of the virus.43 SARS-CoV-2, a
positive-sense, single-stranded RNA virus, exhibits genetic
variability, resulting in the development of variants with
potential implications for transmissibility, severity, and vaccine
efficacy.44 Understanding the molecular mechanisms under-
lying viral replication, immune evasion, and pathogenesis is
crucial, particularly regarding the roles of the intracellular
proteins in the lifecycle of the virus.45 The RdRp, a central
player in viral replication, catalyzes the synthesis of negative-
sense RNA strands crucial for the survival of the virus.46 While
the standalone RdRp exhibits minimal activity due to nsp12,
the incorporation of its cofactors, nsp7 and nsp8, significantly
amplifies its polymerase activity.47,48 Although different viral
nsp subunits play a role in the replication and transcription

processes, the nsp12–nsp7–nsp8 complex serves as the mini-
mal configuration essential for nucleotide polymerization.19

The dimerization of RdRp via the nsp subunits, notably nsp7,
is essential for its functionality, governing viral RNA copying
efficiency. The antiparallel arrangement of the RdRp dimer
reveals the interaction of the two polymerases through nsp7
subunits, facilitated by the a1 and a3 helices (residues 2–20 and
44–62). Dissociation of nsp8b exposes the dimerization region
of nsp7, enabling the formation of an nsp7–nsp7 dimer inter-
face. Previous studies have indicated that mutations in RdRp
subunits can impact the stability of both monomers and
dimers.20 Therefore, investigating RdRp dimerization mechan-
isms could offer insights into potential antiviral strategies and
therapeutic targets.

In some of our previous studies, we implemented high-
throughput protein design methodologies to figure out critical
residues and mutations within the intracellular proteins of
SARS-CoV-2, including RdRp,33 main protease (Mpro),32 and
spike protein RBD,26 impacting the adaptability of the virus
to antiviral drugs and antibody therapeutics. This study delved
into the design and analysis of nsp7 mutations that may have
an impact on the stability, adaptation, and fitness of nsp7
dimers. This comprehensive approach involved an integration
of high-throughput symmetrical protein design, ML, structural
analysis, and validation of the computational predictions using

Table 7 Intermolecular contacts and predicted binding affinities obtained using PRODIGY between nsp7 monomers for the ML-predicted affinity-
enhancing nsp7 designs

S.
no. Types of contacts

Affinity-enhancing
design1

Affinity-enhancing
design2

Affinity-enhancing
design3

Affinity-enhancing
design4

1 No. of intermolecular contacts 90 69 97 69
2 No. of charged–charged contacts 0 0 0 0
3 No. of charged–polar contacts 0 8 8 8
4 No. of charged–apolar contacts 8 8 16 10
5 No. of polar–polar contacts 0 7 8 0
6 No. of apolar–polar contacts 22 26 35 18
7 No. of apolar–apolar contacts 60 20 30 33
8 Percentage of apolar NIS residues 38.00 31.25 46.00 43.14
9 Percentage of charged NIS residues 24.00 31.25 24.00 23.53
10 Predicted binding affinity (kcal mol�1) �11.3 �11.1 �12.0 �9.7
11 Predicted dissociation constant (M) at

25.0 1C
5.0 � 10�9 7.0 � 10�9 1.6 � 10�9 7.5 � 10�8

Table 8 Intermolecular contacts and predicted binding affinities obtained using PRODIGY between nsp7 monomers for the ML-predicted affinity-
reducing nsp7 designs

S.
no. Types of contacts

Affinity-reducing
design1

Affinity-reducing
design2

Affinity-reducing
design3

Affinity-reducing
design4

1 No. of intermolecular contacts 39 52 46 47
2 No. of charged–charged contacts 1 0 0 2
3 No. of charged–polar contacts 4 2 2 0
4 No. of charged–apolar contacts 4 8 9 6
5 No. of polar–polar contacts 2 7 0 3
6 No. of apolar–polar contacts 9 15 9 12
7 No. of apolar–apolar contacts 19 20 26 24
8 Percentage of apolar NIS residues 49.07 44.44 52.73 45.63
9 Percentage of charged NIS residues 17.59 20.37 16.36 27.18
10 Predicted binding affinity (kcal mol�1) �6.5 �7.7 �6.8 �6.6
11 Predicted dissociation constant (M) at

25.0 1C
1.7 � 10�5 2.4 � 10�6 1.1 � 10�5 1.5 � 10�5
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an array of strategies (Fig. 3). The electron microscopic struc-
ture of the RdRp complex utilized by the CPD approach guided
the identification of potential hotspot residues within the
dimeric nsp7 interface (Fig. 1). Symmetrical protein design
using Rosetta aimed to modulate the dimerization of nsp7,
considering 30 selected residues (Table 1). The results demon-
strated acceptable structural changes, emphasizing the intri-
cate nature of small protein–protein complexes. Several
features, including the Rosetta total score, RMSD, and
sequence identity, were analyzed to assess the designs, their
physicochemical properties, and mutational landscape profiles
(Fig. 2 and 4). Affinity-enhancing designs exhibited favourable
energetics, lower Rosetta total scores, and higher binding

affinity compared to affinity-reducing counterparts. Subse-
quently, ML-predicted results correlated well with the CPD
results and provided additional insights. The RFR model out-
performed other algorithms, showcasing its accuracy in pre-
dicting binding affinities (Fig. 5). ML-based sequence
prediction further elucidated the potential nsp7 sequences
harbouring mutations (indicating affinity-enhancing and
affinity-reducing classifications), providing insights into their
binding affinity, Rosetta total score, and capability to derive
new sequence combinations (Fig. 6 and Tables 7, 8). The
AlphaFold v2.0 structural analysis provided insights into the
optimal dimeric configurations of affinity-enhancing designs,
further validating the precision of our approach presented here

Fig. 7 Structure prediction and modeling of the affinity-enhancing and affinity-reducing nsp7 designs using AlphaFold v2.0. In (A)–(D) and (G)–(J),
AlphaFold v2.0 derived structures of the affinity-enhancing and affinity-reducing nsp7 designs along with their backbone RMSDs when superposed with
native nsp7 dimer are presented, respectively. In (E), (F), (K) and (L), the predicted LDDT (pLDDT) of the top-ranked models for the affinity-enhancing and
affinity-reducing designs are displayed, respectively, to assess the quality of the models.
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(Fig. 7). Employing NMA-based analysis, our study further
provided insights into the protein dynamics and stability of
the dimeric structures of wild-type nsp7, affinity-enhancing,
and affinity-reducing designs. Deformability plots highlighted
the flexible regions, with affinity-enhancing designs showing
increased flexibility (Fig. 8A). Correlation covariance matrices
revealed distinct atomic motion states (Fig. 8B–D). Eigenvalue
analysis indicated localized motions, emphasizing differences
between the dimeric wild-type nsp7, and the affinity-enhancing
and affinity-reducing designs (Fig. S2, ESI†). Finally, our com-
prehensive study not only provided valuable insights into the
mechanisms governing nsp7 affinity-enhancing and affinity-
reducing designs but also contributed to the understanding of
the dynamic nature of viral mutations and their impact on viral
fitness. The revealed physicochemical properties, molecular
interactions, and sequence predictions of the dimeric nsp7
subunit may offer potential avenues for therapeutic interven-
tion in combating COVID-19.

Limitations of the study

The study has certain limitations. Firstly, the complexity of the
Rosetta symmetrical dimeric interface design script con-
strained our ability to carry out a symmetric design of all

subunits of the RdRp. Specifically, only the nsp7 subunit was
designed, necessitating the development of an advanced sym-
metrical dimeric interface protocol to encompass all RdRp
subunits for a more comprehensive assessment of mutation
effects. Secondly, while CPD- and ML-based approaches suc-
cessfully predicted favourable mutations on the dimeric nsp7
interface, experimental validation is indispensable to ascertain
the actual binding affinity between the designed nsp7 mono-
mers. Thirdly, other robust computational approaches could be
utilized to obtain single-point mutations of nsp7 that may drive
the sequences towards a stronger or weaker binding between
the nsp7 monomers. However, to address these limitations and
validate the precision of our approach, we cross-referenced our
predictions with clinically known mutations in the SARS-CoV-2
nsp7 subunit of RdRp. These mutations, known in clinical
contexts, provide additional evidence supporting the adaptabil-
ity and stability of nsp7 dimers.

Conclusion

In conclusion, our study addresses the critical aspects of SARS-
CoV-2 intracellular proteins, exploring the intricate dynamics of
its RdRp, particularly the nsp7 subunit. Concerning the COVID-
19 pandemic, understanding the molecular intricacies of viral

Fig. 8 Results obtained from the NMA-based analysis of the dimeric structures of wild-type nsp7, affinity-enhancing, and affinity-reducing designs.
Panel (A) presents the deformability plot, depicting the atom index vs. deformability scores across normal modes for the dimeric structures of nsp7 wild-
type, as well as for the affinity-enhanced and affinity-reducing designs conducted using iMODS. Panels (B)–(D) display the covariance matrix for the
dimeric nsp7 wild-type, affinity-enhancing, and affinity-reducing designs, with red, white, and blue colours indicating correlated, uncorrelated, and anti-
correlated motions, respectively. The black boxes in each plot in panels (B)–(D) illustrate the localized differences in correlation among the wild-type,
affinity-enhancing, and affinity-reducing designs.
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components becomes paramount. Our research employs a
comprehensive approach, shedding light on the stability, adap-
tation, and fitness of nsp7 dimers. The study reveals that nsp7,
a crucial player in viral replication, forms symmetrical dimers
through a complex interface, influencing binding affinity and
stability. By employing a Rosetta-based design strategy and ML-
based predictions, we identified specific hotspot residues
within the dimeric nsp7 interface. Affinity-enhancing designs
exhibited favourable energetics and higher binding affinity,
validated through structural analyses using AlphaFold v2.0.
Importantly, our predictions align with clinically known muta-
tions, providing real-world validation. While our focus on the
nsp7 subunit offers substantial insights, acknowledging the
necessity for a comprehensive analysis involving all RdRp
subunits becomes crucial. In the broader context, our findings
contribute valuable information for potential therapeutic inter-
ventions against COVID-19, emphasizing the dynamic nature of
viral mutations and their impact on viral fitness.
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