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Transfer learning of hyperparameters for fast
construction of anisotropic GPR models: design
and application to the machine-learned force field
FFLUX†

Bienfait K. Isamura and Paul L. A. Popelier *

The polarisable machine-learned force field FFLUX requires pre-trained anisotropic Gaussian process

regression (GPR) models of atomic energies and multipole moments to propagate unbiased molecular

dynamics simulations. The outcome of FFLUX simulations is highly dependent on the predictive

accuracy of the underlying models whose training entails determining the optimal set of model

hyperparameters. Unfortunately, traditional direct learning (DL) procedures do not scale well on this task,

especially when the hyperparameter search is initiated from a (set of) random guess solution(s).

Additionally, the complexity of the hyperparameter space (HS) increases with the number of geometrical

input features, at least for anisotropic kernels, making the optimization of hyperparameters even more

challenging. In this study, we propose a transfer learning (TL) protocol that accelerates the training

process of anisotropic GPR models by facilitating access to promising regions of the HS. The protocol is

based on a seeding–relaxation mechanism in which an excellent guess solution is identified by rapidly

building one or several small source models over a subset of the target training set before readjusting

the previous guess over the entire set. We demonstrate the performance of this protocol by building

and assessing the performance of DL and TL models of atomic energies and charges in various confor-

mations of benzene, ethanol, formic acid dimer and the drug fomepizole. Our experiments suggest that

TL models can be built one order of magnitude faster while preserving the quality of their DL analogs.

Most importantly, when deployed in FFLUX simulations, TL models compete with or even outperform

their DL analogs when it comes to performing FFLUX geometry optimization and computing harmonic

vibrational modes.

1. Introduction

The artificial intelligence revolution has recently caused major
paradigm shifts in many research fields resulting in the pro-
motion of various unconventional data-driven approaches. In
computational chemistry, the integration of traditional simula-
tion techniques with machine learning has given rise to a new
class of unconventional force fields known as machine-learned
potentials (MLPs).1–3 These next-generation force fields find
their motivation in the necessity to circumvent the exorbitant
cost of on-the-fly electronic structure calculations.

In essence, MLPs aim to reach the accuracy of high-level
quantum mechanics approaches at a cost comparable to that of
classic force fields. They owe their current success to the

predictive capability and efficiency of the underlying machine
learning (ML) models, which are trained on high-quality
electronic energies and/or forces. Once trained, these models
can be deployed in simulations to rapidly evaluate the same
properties on previously unseen compounds. The development
of various interfaces with existing computational packages has
facilitated the deployment of MLPs in simulations,4 enabling
these packages to accomplish fast and accurate ML-aided
geometry optimizations and MD simulations.5–7

FFLUX is a polarisable MLP that relies on pre-trained
Gaussian process regression (GPR) models of atomic energies
and multipole moments to action molecular dynamics (MD)
simulations.8 This next-generation force field has been success-
fully utilized to investigate the bulk properties of liquid water9

and the polymorphism of formamide,10 to cite only these
examples. The outcome of FFLUX simulations depends heavily
on the predictive capability of the underlying models, which is
in turn dictated by the choice of model hyperparameters.
Regrettably, optimal hyperparameters are never known in
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advance. Instead, they must be determined by navigating the
landscape of a given loss function. Because tiny changes in the
hyperparameters’ values can cause disproportional fluctuations
in the quality of a model, it is important that optimal hyper-
parameters be accurately determined. Unfortunately, the exer-
cise of fine-tuning GPR model hyperparameters does not scale
well with the size of the training set, namely O(N3) in terms of
computational complexity and O(N2) for memory. Even more
annoying is the complexity of the hyperparameter space, which
usually blows up with the number of input features, at least for
anisotropic kernels, making it even more challenging to locate
optimal kernel parameters within a reasonable amount of time.

The unfavorable scaling of GPs is the main bottleneck
discouraging their application to large datasets. Several solu-
tions have been proposed to address this problem. For brevity,
we will only mention the two most conceptually appealing
solutions. The first solution consists of applying so-called
reduced-rank approximations.11 These sparse GPs have been
proven to considerably speed up the training process of GPR
models while reducing the memory requirement. These
schemes attempt to avoid any explicit manipulation (especially
inversion) of the full covariance matrix but work on projections
in different subspaces. Popular sparse GP algorithms exhibit
O(N2N) computational complexity and O(MN) storage demand,
with M (M o N) being the number of active points.12 Despite
this outstanding improvement, these schemes often fail to
preserve the desired predictive accuracy of full GP inference.
This is because the selection of the so-called ‘‘inducing points,
support points, pseudo-points or even active points is more
challenging than it may seem and when inappropriately done,
might have unexpected and usually disagreeable repercussions
on the sparsity, numerical stability, and predictive accuracy of
sparse GPs. Furthermore, as long as the selection of active/
pseudo-points is coupled with the optimization of hyperpara-
meters, there are more variables to fit, which (unless carefully
handled) increases the risk of overfitting as recognized in the
case of sparse spectrum GPR.13

The second solution exploits the nature of the solver used to
invert the covariance matrix. Indeed, there is empirical proof
that GPR models can be trained more effectively if an iterative
solver, like a preconditioned conjugate gradient, were used in
place of the usual Cholesky decomposition, which is a direct
solver.14,15 It is true that iterative solvers not only eliminate the
need for storing the entire covariance matrix but also reduce
the complexity from O(N3) to O(N2). However, since their con-
vergence is never guaranteed, even when boosted by tailored
preconditioners, it is not always clear how much the hyperpara-
meters, the regression weights, and subsequently the quality of
the final model have been compromised. Therefore, although
elegant and recommended for extremely large datasets, both
sparse GPs and iterative solvers only offer a tangible advantage
when memory allocation is a concern. Otherwise, to preserve
the outstanding and desired predictive capability of exact GP
inference on (relatively) big yet manageable datasets, alterna-
tive strategies for fast training of full GPR models employing
direct solvers must be promoted.16,17

Assuming the covariance matrix can fit in memory, it is right
to think that GPR models can be built more efficiently by
minimizing the number of times the full covariance matrix
must be inverted when optimizing model GPR hyperpara-
meters. One way to achieve this is to ensure that the tuning
of a target model is started from an excellent, yet easily
accessible, set of hyperparameters. Having an excellent guess
solution, as opposed to random initialization, is expected to
facilitate the location of promising areas of the hyperparameter
space (HS) and, as a result, to naturally reduce the number of
iterations required to locate a reasonable estimation of the
optimal hyperparameters. However, since each HS is unique,
finding a good starting set of hyperparameters is never trivial,
and may become impossible if one has to set it up manually.
Here we propose a protocol that systematically solves the
problem, based on the concept of ‘‘transfer of knowledge
(hyperparameters)’’ or transfer learning (TL).

The current proof-of-concept study aims (i) to demonstrate
the transferability of hyperparameters in anisotropic GP regres-
sion, and (ii) to document the balance between the predictive
accuracy and building cost of atomic GPR models trained via
direct and transfer learning of hyperparameters. The protocol
presented in Section 2.4.1 has been implemented in our in-
house program FEREBUS.18–20 The latter program is a GPR
engine written in free format modern Fortran, and accelerated
via Open Multi-Processing. We claim the universality of this TL
protocol as it does not impose any specific requirement in
terms of datasets. The only design choices are that (i) the
covariance matrix fits in memory, (ii) each GPR model is
trained to reproduce a unique target property (single-objective
GPR), and (iii) the chosen kernel is anisotropic and defined in
terms of automatic relevance determination. The third design
choice can be justified by evoking the well-known higher
flexibility and superior predictive capability of anisotropic
GPR models as compared to their isotropic analogs.21

The protocol proposed here follows a two-phase seeding–
relaxation mechanism in which an excellent guess solution is
located by training one (or possibly several) source model(s)
over a subset of the (target) training set, before relaxing that
guess for a few iterations on the entire training set. The
protocol has been tested by building and deploying both direct
and TL models in FFLUX simulations. These models were
trained on the electronic energies and charges of topological
quantum atoms in various conformations of benzene (BZ),
formic acid dimer (FAD), ethanol (ETL), and fomepizole (FPL)
(4-methylpyrazole). As in previous studies from our group, we
rely on quantum chemical topology (QCT)22 tools to realize an
exhaustive real-space partitioning of molecular properties into
atomic/local contributions. However, unlike the usual assess-
ment of our GPR models based on atom-wise predictions,23,24

we focus here on the ability of these atomic GPR models to
reconstruct molecular energies and charges. This allows us to
obtain an overall appreciation of the quality of all atomic
models without having to explicitly look at each of them.

We show (i) that TL of hyperparameters accelerates
the training process of anisotropic GPR models while
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preserving the predictive accuracy of direct models, (ii) that
frozen-seed (FS) TL models, i.e. TL modes whose guess solution
(seed) was not relaxed, can suffer from sub-optimality when
the source dataset is small and non-representative of the target
dataset and (iii) that TL models exhibit competitive perfor-
mance to their DL analogs when deployed in FFLUX
simulations.

The remainder of this paper is organized as follows:
in Section 2, we cover the theory this work is built on.
Computational details, including dataset generation, model
construction, optimization settings, and FFLUX simulation
details are presented in Section 3. Section 4 is devoted to
presenting and discussing our results, focusing on the learning
capability of DL models and the comparison between DL and
TL models. Finally, we reiterate the main findings in the
conclusion.

2. Theory
2.1. FFLUX: a polarisable QCT-based force field

The logical premise underlying the architecture of most MLPs
is that the total energy E of a molecular system can be decom-
posed into a sum of local contributions Ei, i.e., E ¼

P
Ei. This

partitioning procedure is either automated within the ML
architecture25,26 or carefully performed before training.8 In
the first case, one obtains a collection of ‘‘sites’’ energies
that might fluctuate in unexpected ways depending on the
learning architecture. Unlike pre-calculated, physically justified
atomic energies, these quantities may not reflect any well-
defined physical quantity. The second option is the choice of
the polarisable force field FFLUX. The latter relies on atomic
GPR models of justifiable atomic energies and multipole
moments.

The reference (‘‘exact’’) atomic energies and multipole
moments that our GPR models are trained on are determined
using a combination of two QCT methods: the quantum theory
of atoms in molecules (QTAIM)27 and the interacting quantum
atoms (IQA)28 energy decomposition method.

On the one hand, QTAIM allows molecules and clusters to
be compartmented into non-overlapping regions/basins known
as topological quantum atoms. Each such quantum atom O is
surrounded by an interatomic surface S(O) characterized by a
zero flux of the gradient vector field of the electron density
rr(r).

rr(r)�n(r) = 0 for all points on S (1)

where r A S(r) and n(r) is a unit vector perpendicular to
S(O) at r.

On the other hand, the IQA29 methodology exploits the first
and second-order reduced density matrices to exhaustively
decompose the total energy of a molecular system into atomic
contributions EA

IQA. Each atomic IQA energy encloses an intra-
atomic (EA

intra) and an interatomic (EAB
intra) component (eqn (2)).

The latter components can be further partitioned into finer

contributions as shown in eqn (3) and (4).

E ¼
X
A

EA
IQA ¼

X
A

EA
intra þ

1

2

X
BaA

EAB
inter (2)

EA
intra = TA + VA

ne + VA
ee (3)

VAB
inter = VAB

nn + VAB
ne +VAB

en + VAB
ee (4)

where the left-most sum in eqn (2) runs over all topological
atoms, while the right-most sum runs over all the other atomic
basins B. The subscripts n and e in eqn (3) and (4) stand
respectively for nuclear and electronic interactions.

The fact that VAB
ee can be split into a Coulombic (VAB

cout) and an
exchange–correlation (VAB

xc ) energy term makes it possible to
rewrite VAB

inter in a more compact way as the sum of a purely
classical (VAB

cl ) and an exchange–correlation term (VAB
xc ).

VAB
inter = VAB

cl + VAB
xc (5)

Note that atomic multipole moments (Qlm) are obtained via a
Taylor expansion of VAB

cl .
Our in-house MD simulator DL-FFLUX8 utilizes flexible

multipole moments (up to Q4m) to describe long-range electro-
static interactions, while short-range interactions are captured
within EIQA. Only EIQA models are required to action FFLUX
simulations of single molecules in the gas phase such as the
ones reported in this study.

2.2. Gaussian process regression

Gaussian process (GP) regression is a non-parametric interpo-
lation technique that provides both accurate predictions and
reliable estimates of the uncertainty associated with each
prediction. The approach can be derived from Bayesian statis-
tics building on the concept of ‘‘Gaussian processes’’. For the
sake of brevity, we recommend to interested readers the semi-
nal book by Rasmussen and Williams.11

Training a GPR model over a dataset of D = {X, y} made of N
observations is a challenging task that requires finding the optimal

set of model hyperparameters (ĥ). These include the kernel para-
meters (hk) and the regularisation noise (sn

2). Here we rely on the
iterative hold-out cross-validation (IHOCV)20 approach to deter-
mine these hyperparameters. The IHOCV protocol proceeds by
minimizing the predictive root-mean-square error of intermediary
models over a sufficiently large internal validation set.

L htð Þ2 ¼ 1

M

XM
j¼1

yj �m�
XN
i¼1

oik xi; xj jht
� � !2

(6)

where L hð Þ is the loss function, m is the prior mean function of the
GP, ht is a candidate solution (set of temporary hyperparameters),
and M and N are the number of validation and training geometries,
respectively. Without any loss of generality, m is chosen here to be
constant and equal to the arithmetic mean of the target property

values m ¼ 1=Nð Þ
PN
I¼1

yi

� �
. Such a mean function guarantees the

physicality of all predictions30 even in the extrapolation regime.
The coefficients oi in eqn (6) are regression weights. These

parameters are collected in the weights vector o calculated as
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shown in eqn (7), where ym is a mean-shifted vector of target
properties, i.e.y � 1m, and KXX is the covariance matrix defined
in eqn (8),

x = KXX
�1ym (7)

Kij = k(xi, xj|hk) + dijsn
2 (8)

The term sn
2 is a regularisation term often associated with the

noise level in the training data, while dij is the Kronecker delta.
The symbol k represents a covariance function or kernel. This
function is meant to measure the similarity between any pair of
geometries. The quantity k(xi, xj|h

t)in eqn (6) records the
similarity between the jth validation geometry and ith training
geometry.

Every data point (geometry) in the input space is encoded in
a vector of fixed length x using the so-called ALF (atomic local
frame) representation,31 while similarities between geometries
in the ALF space are described using the composite kernel
defined in eqn (9),

k xi; xj jhk
� �

¼ s2 exp
XNfeats

d¼1
ydfd xi; xj

� � !
(9)

where Nfeats is the number of input features, d is the dth
dimension of the input space and hk is a set of parameters that
control the smoothness of the kernel. The stationary function
fd is given dimension-wise by:

fd xi; xj
� �

¼
xdi � xdj

� �2
if d � 3 or mod d; 3ð Þa0

sin2 xdi � xdj

� �.
2

h i
otherwise

8<
:

(10)

where the function mod(d,3) returns the remainder of the
division of d by 3.

Assuming a GPR model has already been trained, predic-
tions can be made for any new geometry x* using eqn (11),

ypred ĥ
� �
� y� ¼ mþ

XN
i¼1

ôik xi; x
�jĥk

� �
(11)

where ĥk is a set of optimal kernel parameters and ôi is the
optimal regression weight associated with the ith training
geometry.

2.3. Context and related work

The concept of transfer learning (TL) has a long history in the
deep learning community.32,33 Despite the peculiarities of each
proposed TL protocol, they are all characterized by the sharing
of knowledge between domains and corresponding tasks. A
typical scenario is one in which prior knowledge about one or
several source tasks is leveraged to improve the learning
process of a target learner. This setting deviates from the direct
or traditional learning paradigm where models are built
directly on the target domain.

Transfer learning has shown tremendous success in numer-
ous fields, including computational chemistry,34 computer
vision,35 and natural language processing,36 to cite only a few.

The TL idea is often resorted to when it comes to (i) improving
the predictive capability of (target) regression models and/or (ii)
accelerating their training process. The concept has allowed
computational chemists to address the scarcity of high-quality
data, such as CCSD(T) energies and atomic forces. In general, a
big source model, most often a neural network, is trained on a
myriad of lower-quality data, and the knowledge (weights and
biases) accumulated into the previous source model is lever-
aged to reduce the risk of overfitting the small high-quality
training data.37 The training (readjustment) of the target model
thus benefits from the existing knowledge, such as physical
trends and positions of stationary points, already captured
by the large source model. Most importantly, only part of the
ML architecture has to be updated, which can save a lot of
CPU time.

Rather than focusing on explicitly improving the predictive
capability of a given model, our TL protocol (presented in the
next paragraph) aims at speeding up the training process of a
large target anisotropic GPR model while maintaining the
quality of an equivalent but bad scaling DL model. By equiva-
lent we mean a model trained on the same (number of)
geometries. Our protocol accelerates the construction of target
GPR models by transferring guess hyperparameters from one
(or possibly several) smaller source models.

Related to our work are two previous papers that need to be
mentioned here. In the first paper,38 the authors state that
anisotropic kernel parameters optimized on a small dataset
could be used unchanged to build a final model over a bigger
training set. This argument translates to what we have re-
branded ‘‘frozen-seed’’ TL (see Section 2.4.1). Although it
makes sense, this assumption ignores the discrepancies
between the source and target domains. In some contexts, this
can lead to a significant loss of accuracy as compared to an
equivalent DL model. To prevent this, our approach allows the
hyperparameters learned on the source domain to relax on the
target training set, for a few iterations.

The second paper dates back to 2017.39 In this work,
different authors apply the golden-section search algorithm40

to locate an isotropic approximate solution, which they then
utilize as the starting point for a gradient-based optimization in
the actual anisotropic space. Their gradient-enhanced kriging
was shown to achieve better results as compared to random
initialization. Like our protocol, their workflow involves two
phases. However, unlike us, they choose to unjustifiably ignore
the heterogeneity inherent to the input space during the first
step, yet without prior feature scaling. Furthermore, their
protocol does not incorporate any regularisation noise in the
first phase, a choice that exposes it to high risks of numerical
instability.40 In contrast, our protocol works entirely in the
actual HS, with tuneable regularisation noise.

2.4. Transfer learning of hyperparameters

2.4.1. The protocol. Our protocol (see workflow in Fig. 1)
involves four main steps or operations regrouped into two
consecutive phases: the seeding or guessing phase G and the
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relaxation phase R.

hrf g !G h0 �!R ĥ

where {hr} is a random set of candidate solutions, h0 and ĥ are
the guess and the best achievable (optimal) solutions,
respectively.

Two types of models are involved in the design of the
protocol: a source model and a target model. The source model
is trained on a subset S of the target dataset T. We propose the
name knowledge compression coefficient Zfor the ratio
between the sizes of the datasets S and T. A second control
parameter called relaxation weight z is also defined as the ratio
between the number of relaxation iterations w and the total
number of iterations t.

Z = |S|/|T| (12)

z = w/t (13)

The notation TLz
Z is introduced to denote a transfer learning

task defined by the two control parameters Z and z. Depending
on the value of z, one can distinguish two special cases: (i) z =
1and (ii) z = 0. The first case leads to fully seeded TL, while the
second case gives rise to a class of unrelaxed models that we
have coined frozen-seed transfer learning (FS-TL) models. The
notation FS-TLZ will sometimes be used to denote FS-TL
models.

Guessing phase G
Step 1: subsampling. A source training set S is generated by

random subsampling of the target training set T. Besides
random selection, FEREBUS is equipped with two enhanced
sampling techniques, namely passive and stratified sampling.
Both techniques have been widely discussed elsewhere.41

Step 2: training of source model. Once the dataset S has been
generated, a source model is trained over it using our grey wolf
optimizer described in Section 2.5. For a single-source TL task,
this process starts with an initial pool of random solutions {hr}
and returns a unique guess solution (h0). In the case of multi-
source TL, Ns. solutions are collected and the transfer of these
solutions to the target model is briefly discussed in Section 1 of
the ESI.†

Relaxation phase R
Step 3: guess perturbation. For single-source TL such as

those examined in this work, only one guess solution is avail-
able at the end of phase G. Since our metaheuristic optimizer
requires W agents (candidate solutions) to scrutinize the HS,
with W 4 3, phase R starts by re-populating the matrix P of
candidate solutions. For this purpose, we first transfer h0 to P,
then generate the remaining W � 1 candidate solutions (h0

pert)
via restricted small random walks around h0. The dth compo-
nent of each perturbed solution is computed using eqn (14),

h0
pert,d = h0

d (1 + rmaxe) (14)

where is e a random number uniformly sampled within the
range [�1,1] and rmax is a parameter that controls the extent of
perturbations around each component of the vector h0.

By default, rmax is set to 0.25 (the same value is used in this
work). However, the optimal value of this parameter is problem-
dependent and should be adjusted such that the h0

pert solutions
are of similar to better quality than h0. Large rmax values may
lead to solutions of poor quality (situated far from h0), while
very small values can restrict the accessible region of the HS.
We recommend that FEREBUS users perform a grid search
between 0.10 and 0.50 (step of 0.05) to find the most appro-
priate value for their system and choose the value delivering the
best models.

Step 4: training of target model. Once P is available, the
algorithm can proceed to the final step, i.e., training the
target model.

2.4.2. Timings and speedup. The training time (OTL) of a
given TLz

Z model can be decomposed as the sum of the guessing

Fig. 1 Simplified workflow of the proposed TL/DL protocol. The TL steps
are numbered from 1 to 4, while the TL phases are indicated by G and R.
The green- and red-filled circles respectively denote optional and man-
datory steps. The perturbation of the guess solution is optional; it is
skipped in the case of FS-TL. The yellow-filled circle marks the transfer
point. On input, the protocol requires various input files, including dataset
files and a configuration.toml file. The latter must be edited by the user to
specify control parameters for their job. FEREBUS users can switch the TL
pipeline on and off by setting the transfer_learning directive to 1 or 0. Most
control parameters have default values defined in the config.f90 module.
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and relaxation timings (OG and OR).

OTL ¼ OG þ OR ¼ 1� zð Þ � t� C Gð Þ þ z� t� C Rð Þ (15)

where C Gð Þ and C Rð Þ are respectively the complexity/cost of a
single iteration within the guessing and relaxation
C Gð Þo C Rð Þð Þ; and t the total number of iterations. By default,

phase G lasts (1 �z) � t iterations, while phase R is propagated
for z � t iterations. This behavior can be changed by setting the
full_seeding directive to 1, in which case the guessing phase
runs over t iterations.

In general, C Gð Þ and C Rð Þ are dominated by the inversion of

the associated covariance matrices, which scale as O Sj j3
� �

and

O Tj j3
� �

, respectively. Keeping in mind that ODL ¼ t� C Rð Þ
and neglecting input/output delays one obtains:

D ¼ OTL

ODL
¼ 1� zð Þ � t� C Gð Þ

t� C Rð Þ þ z� t� C Rð Þ
t� C Rð Þ (16)

The previous equation can be written more concisely as:

D ¼ OTL

ODL
¼ 1� zð Þ � gþ z (17)

where g ¼ C Gð ÞC Rð Þ is the relative complexity of a single training

iteration in the guess and relaxation phases of a TLz
Z task.

We distinguish two asymptotic cases depending on the
choice of Z: (i) |S| = |T| and (ii) |S| { |T|. In the first case,
g = 1 such that D = 1. This implies that the TL protocol reduces
to DL when S is set to be the same as T (Z = 1). In the second
case, g B 0 and D - z. In this scenario, the expected speed-up
(D�1) is upper-bounded by z�1, the inverse of the relaxation
weight. In between these two extreme cases, the TL protocol
guarantees acceleration if and only if D o 1, i.e. from eqn (17),

(1 � z) � g + z o 1 ) g o 1 (18)

The previous condition is always true in the case of single-
source TLz

Z tasks. This is because SCT implies that C Gð Þo C Rð Þ
and g o 1. However, in the case of multi-source TLz

Z tasks, the
speed-up condition becomes:

Ns � 1� zð Þ � gþ zo 1) go
1

Ns
(19)

where Ns is the number of source models built in serial.
A final scenario to consider here is when the full_seeding

flag is activated. This flag sets z to 0 in the guessing phase only,
leading to a total of (1 + z) � t iterations including t steps in
phase G and z � t steps in phase R. By setting z to 0 in the first
right-hand term of eqn (16), the speed-up conditions for single-
source and multi-source TL models become g o 1 � z and g o
(1 � z)/Ns, respectively.

2.5. GWO-RUHL: an enhanced grey wolf optimizer

The choice of optimizer is a determinant factor of the perfor-
mance of our TL protocol. FEREBUS relies on our recently
reported enhanced grey wolf optimizer (GWO-RUHL)42 because
of its excellent exploration and exploitation capabilities.

Like vanilla GWO,43 the GWO-RUHL algorithm is a
metaheuristic optimizer inspired by the predation mechanism
and leadership hierarchy of grey wolves. This optimizer utilizes
a team of W agents to scrutinize the HS. Every agent is encoded
as a vector of the same dimension as the HS and constitutes
a candidate solution. At the end of each iteration, all candidate
solutions are ranked in ascending order of proximity to the
optimal solution. The a, b, and d agents are the best
solutions or leaders. Their positions serve to orient the move-
ment of non-leader solutions (called o solutions) toward more
promising regions of the search space. The position of an o
solution j is updated following eqn (20)–(22),

Dl,d = |Cl,d�hl,d(t) � hj,d(t)| (20)

y0l;d tþ 1ð Þ ¼ yl;d tð Þ � Al;d �Dl;d (21)

yj;d tþ 1ð Þ ¼ 1

3

X
l

y
0
l;d tþ 1ð Þ (22)

where t stands for the current iteration, l A {a, b, d} and d is the
dth dimension of the HS. The stochastic perturbation matrices
A and C are defined in eqn (23) and (24), where r1 and r1 are two
random numbers in the range [0,1]. The time-dependent para-
meter a(t) is decreased linearly from amax to 0 to control the
balance between exploration and exploitation of the HS during
the optimization process.

Al,d(t) = 2a(t)r1 � a(t) (23)

Cl,d(t) = 2a(t)r2 (24)

Improving over vanilla GWO, our GWO-RUHL(n,p) algo-
rithm (n and p are explained below) accounts for the natural
desire of o wolves to occupy high-ranked positions in the
leadership hierarchy. This is achieved by inserting in the
previous search mechanism a new operator Û, which acts on
the current population P and promotes a certain number n of o
solutions toward new positions situated in the vicinity of the
centroid of the three leaders (positions believed to host better
solutions). This operation, ÛP = P0, is repeated every p iteration
and each promoted (lucky) solution is calculated using
eqn (25),

h
0
o tþ 1ð Þ ¼ L tð Þ 1þ e �r;þrð Þ½ � (25)

where o is a randomly selected (lucky) non-leader wolf
(solution), L is the centroid of the leaders’ positions, and
e(�r, +r) is a random number between �r and +r (with r A [0,1]).

3. Computational details
3.1. Conformational sampling

The initial datasets were made of 10 000 geometries of each of
the four molecules of interest. Geometries of BZ and ETL were
retrieved from the original MD17 database,44 while those of
FAD and FPL were obtained through unbiased semi-empirical
molecular dynamics (USEMD) simulations.

USEMD simulations were performed in the gas phase with-
out periodic boundary conditions using the GFN2-xTB
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method45 as implemented in the atomic simulation environ-
ment (ASE) Python package.4 Each simulation was performed
in the canonical NVT ensemble at 300 K using the Langevin
thermostat with a friction coefficient of 0.01 fs�1. All simula-
tions were propagated for 1 ns with a timestep of 1 fs. Snap-
shots were retrieved every 100 fs leading to a generous
population of 10 000 geometries. Fig. 2 shows the conforma-
tional space sampling of each molecule of interest.

3.2. QTAIM/IQA calculations, featurisation, and dataset
filtering

Once collected, all the geometries were passed to our in-house
ICHOR31 package. The latter is a Python package that auto-
mates the calculation of both input features and target proper-
ties. Wavefunctions were extracted via single-point calculations
at B3LYP/6-31+G(d,p) (FAD and FPL) and B3LYP/aug-cc-pVTZ
(BZ and ETL) levels of theory using GAUSSIAN16.47 Each
wavefunction was then processed by AIMAll1948 to compute
the atomic QTAIM/IQA properties using equations described in
Section 2.1. Concomitantly, each geometry was encoded as a
vector of fixed length using the so-called atomic local frame
(ALF) molecular descriptor.31 The resulting features were com-
bined with the target properties (IQA and Q00), leading to an
initial database that was later filtered by removing all geome-
tries for which the molecular energy and charge could not be
reconstructed within margins of 1 kJ mol�1 and 1 me. The
filtered database was randomly split into training, validation,
and test sets. A summary of the filtering results is provided in
Section 2 of the ESI.†

3.3. Model construction and optimization settings

All atomic GPR models were trained following the IHOCV
protocol using 8 cores on compute nodes equipped with
Cascade Lake Xeon Gold 6230 CPUs of 2.10 GHz clock speed
each. The smallest DL models (1000 training geometries) were
also retrained using 1, 4, 12, 16 and 20 cores to assess the effect
of computing resources on the building cost.

Preliminary experiments were conducted to determine the
validation set size and the number of candidate solutions that
provide a reasonable trade-off before accuracy, cost, and con-
sistency of predictive metrics upon successive runs. The results
obtained for the smallest direct learning (DL) models suggested
that a validation set of 500 geometries produced the best
models. All the models were tested on 1000 geometries.

Optimization runs were carried out for a maximum of t =
200 iterations using a set of 50 active agents identified among
an initial random population of 500 candidate solutions
thrown on the HS. The following control parameters were
chosen for the GWO-RUHL(n,p) algorithm: amax = 2.0 (except
in phaseR of all TLz

Z tasks where amax was set to 1.0 to promote
the exploitation/intensification of the HS43), r = 0.20, n = 5 and
p = 5. As per n and p values, 5 non-leader solutions were
promoted every 5 iterations toward promising regions of the
HS, whose boundaries were defined as [0.0,3.0] and
[10�14,10�4] for the kernel parameters and regularisation noise,
respectively. To avoid unphysical solutions, FEREBUS makes
sure all solutions crossing the walls of the previous HS are
randomly reinitialized inside the boundaries of the HS during
the optimization process.49 All FEREBUS control parameters
referred to in this paper are described in Table S1 of the ESI.†

Before we compare the performance and training costs of DL
and TL models, we took care to first assess the training cost and
learning capability of DL models. For this purpose, we monitored
the training timings and predictive mean absolute errors (MAEs) of
each DL model as we varied several factors, including the number
of training points (from 1000 to 8000 geometries) and the valida-
tion set size (between 25 and 500 geometries). We made sure these
datasets did not overlap with each other or with the test set.

After careful examination of DL models, we moved on to
building and assessing the performance of TL models. Single-
source TL models were built by targeting the largest DL models.
For each atom and target property, we trained 9 = 3 � 3
different single-source TL models for all combinations of Z
(0.00, 0.10, 0.25) and z (0.00, 0.05, 0.10) parameters. Unless
otherwise stated, (i) guess solutions were perturbed using a
maximum deviation parameter rmax of 0.25, and (ii) no prior
scaling of the features and target properties was applied.

By design, FEREBUS builds atomic GPR models. However,
molecular predictions can be easily obtained through recon-
struction using eqn (26),

Lpred
j ¼

XNatoms

A¼1
Lpred

A

¼
XNatoms

A¼1
mL;A þ

XN
i¼1

ôi;L;Ak xi; xj jhk;L;A
� � !

(26)

Fig. 2 Conformational space sampling: the overlaid geometries were
rotated about the first trajectory frame using the Kabsch algorithm.46 This
image shows the pronounced flexibility of the ETL molecule allowing for
full rotation of the CH3 and OH groups. The sampled conformation space
of FAD involves stretching of the two hydrogen bonds and movements
about the plane of the molecule. BZ is very rigid while FPL shows fairly
considerable structural fluctuations around the CH3, CH and NH groups.
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where j denotes a given test molecule, L is the target property
(either EIQA or Q00), N is the number of training geometries and
Natoms is the number of atoms in molecule j. All the other terms
have the same meaning as in Section 2.2.

3.4. Normal mode calculations

Normal mode calculations were carried out for each molecule
of interest. The GAUSSIAN optimized geometry (at the reference
level of theory specified in Section 3.2) was slightly perturbed by
moving each atom 0.01 Å back and forth in the XYZ directions.
Then, atomic forces were computed using analytical formulae
implemented in DL_FFLUX. Using the previous atomic forces
and the perturbed geometries, normal modes, and vibrational
frequencies were computed using the finite-difference method
implemented in Phonopy.50 These calculations involved the
diagonalization of a mass-weighted Hessian matrix whose
eigenvectors and eigenvalues identify with the normal modes
and vibrational frequencies, respectively.

3.5. Geometry optimisation

The program DL_FFLUX is built on DL_POLY 451,52 and shares
many of its routines. One of these is the ‘‘Zero Kelvin’’ optimi-
zer thanks to which DL_FFLUX can perform geometry optimi-
zation calculations by maintaining the velocity of atoms below
10 K during a short simulation. In this way, the movement of
atoms follows the direction of calculated forces and torques.
DL_FFLUX geometry optimization calculations were propa-
gated for 2 ps with a timestep of 1 fs in the NVT ensemble
using the Nosé–Hoover thermostat and a relaxation time of 0.2
ps. The starting geometries q0 were carefully generated by
perturbing the GAUSSIAN minimum (qmin) along its normal
modes. For each normal mode q, q0 was defined as shown in
eqn (27),

q0 = qmin + DF � q (27)

where the displacement factor (DF) is chosen to vary between
0.1 and 0.5.

4. Results and discussion
4.1. Performance of DL models

4.1.1. Learning curves. In this section, we discuss the
performance of direct learning (DL) models. The largest of
these models were trained on 8000 geometries, which will serve
as references when discussing the performance of TL models in
Section 4.2. We emphasize that all the models reported here
were trained using an anisotropic kernel in the context of the
IHOCV approach. This choice is justified in Section 4 of the
ESI† (Table S2).

Fig. 3 depicts the molecular learning curves of DL models.
The corresponding element-wise learning curves and molecular
learning S-curves are collected in Section 5 of the ESI.† Notice
that the curves in Fig. 3 are well-behaved53 in the sense that the
models progressively and consistently improve their general-
ization aptitude as we increase the training set size. Such
learning curves are characteristics of well-posed learning pro-
blems and are sometimes called monotonic54 curves. Theore-
tical studies on the link between GP assumptions and learning
behavior suggest that ill-behaved learning curves (with bumps)
could be indicative of a misspecified GP.55

The performance of EIQA models improved by a factor of 2.9,
3.7, 2.6, and 3.3 as we augmented the training set from 1000 to
8000 geometries in the case of BZ, ETL, FAD, and FPL, respec-
tively. Similar refinement factors of 3.5, 3.7, 3.1, and 3.6 were
respectively observed for Q00 models. The fact that the predic-
tive MAEs of the largest DL models lie within the limit of
chemical accuracy (B4 kJ mol�1) advocates for the adequate-
ness of these models to be deployed in ML-aided simulations.
Furthermore, except for ETL, all the largest DL models mana-
ged to reproduce molecular charges with predictive MAEs
below 1 me.

The learning curves in Fig. 3 demonstrate the peculiarity of
each system in terms of performance, learning slopes/rate and
saturation point location. These overall and unique features
reflect the different molecular flexibilities and levels of

Fig. 3 Learning curves of anisotropic GPR models trained on 1000 to 8000 geometries. All the models were tested on the same set of 1000 geometries.
The hyperparameters were optimized on an internal validation set of 500 geometries.
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complexity of the conformational spaces under investigation.
For instance, the fact that BZ is a very rigid molecule
justifies the outstanding ability of the DL models to
reproduce its atomic properties. In contrast, despite its smaller
size, ETL is relatively more flexible than BZ and this attribute is
mirrored by the higher predictive MAE values observed for DL
models of ETL compared to those of BZ. From another per-
spective, the same reasoning explains why the local properties
of atoms that move more tend to be more difficult to machine-
learn.

Finally, it is worth emphasising that static performance
metrics (such as the MAE values reported in this section) are
not always conclusive. Since the training and test sets come
from the same dataset, they inherit its caveats. For this reason,
the computed MAEs cannot tell how robust a model is, that is,
how it will behave in a real deployment scenario such as in a
FFLUX simulation. One must then be careful when inferring
conclusions from such metrics. In particular, this is true when
it comes to guessing the relative stability of MLP-driven simula-
tions, which is mostly a matter of the extent of the conforma-
tional space coverage.

4.1.2. Training time. While data augmentation improves
the predictive capability of a model, it also comes at the price of
an increased computational training cost. In this section, we
investigate how the training cost of DL models by FEREBUS
only is influenced by the training set size, the amount of
resources available, and the validation set size. Herein, we
evaluate the training cost in terms of wall time and CPU times.
Of course, the wall time reflects what the user perceives, while
the CPU time relates to the amount of computer power used by
a program.56 In its standard output file, FEREBUS decomposes
the CPU time into the user time and the time devoted to
system calls.

Fig. 4 shows the CPU/core and wall times of atomic GPR-DL
models trained on 1000 to 8000 geometries. The raw data are
collected in Table S3 in Section 6 of the ESI.† The timings
reported in this study correspond to the shortest CPU/core and
wall times recorded for a set of EIQA and Q00 models trained on
the same geometries. Comparing the shortest timings is meant
to alleviate the undesired and biasing effect of architecture-
related noise.

According to Fig. 4, the training cost increases monotoni-
cally with the size of the training set. For a fixed model size
(number of training geometries), it is the dimension of the HS
(Nfeats + 2) that controls the training cost. This explains why
training the largest DL model of FPL (Nfeats = 30) took 90
minutes longer than ETL (Nfeats = 21). In general, CPU/core
and wall times increase in the order ETL o FAD o BZ o FPL. A
slightly different pattern is observed for models trained on 6000
to 8000 geometries, where the training costs of BZ and FAD
models are swapped. We attribute this effect to the datasets
themselves, more specifically to how the relative positions of
geometries in the input space affect the condition number of
the covariance matrix. Indeed, adverse effects of ill-
conditioning can be amplified by the dimension of the covar-
iance matrix, which may have been the case between FAD and
BZ models as we kept extending their knowledge content.

Intuitively, one should expect the training time of anisotro-
pic GPR models to also depend on the number of computing
resources available at runtime. Fig. 5 shows the training CPU/
core and wall times of DL models trained on 1000 geometries
using an increasing number of CPU cores, namely 1, 4, 8, 12,
16, and 20 cores. We reiterate that the results reported else-
where in this work were obtained using 8 cores. It turns out
that, unlike the total CPU time, which is less sensitive to the
number of cores requested per training job (random variations

Fig. 4 Training cost of anisotropic GPR models of atomic energies and charges. CPU/core and wall times expressed in hours. Individual timings for each
molecule are shown in the top panel, while the bottom histograms combine individual data to facilitate comparison.
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due to system calls), the wall times (and the CPU time per core)
decrease almost linearly with the number of CPU cores engaged
in the training process. Notice also that for the smallest
training set, the CPU/core and wall times differ by up to 17%,
which suggests that in these cases, the program spent a non-
negligible portion of the wall time dealing with non-CPU-
related delays, such as waiting for resources to be available.
Furthermore, the fact that the speedup increases monotonically
(yet not linearly) with the number of CPU cores is a strong
argument in favor of the reasonably good parallelization of our
GPR engine (with B95% parallelization according to Amdahl’s
law57). We reiterate that FEREBUS relies on OpenMP to dis-
tribute the workload over several threads in the hottest parts of

the code.18,19,42 These hot spots correspond to routines that
compute the loss functions for each candidate solution.

Besides the training set size and the computing resources
available, the size of the fixed validation set is another impor-
tant factor that determines both the generalization aptitude
and training cost of anisotropic GPR models within the IHOCV
framework. Fig. 6 illustrates the training costs (CPU times per
core) and predictive MAEs of various DL models trained on
1000 and on 8000 geometries using an increasing number of
validation geometries (25 to 500). In general, it is right to think
that the training time will always increase with the number of
validation geometries. However, we find that the extent of this
effect is both system-dependent and inversely proportional to

Fig. 5 Effect of the number of CPU cores on the training cost of anisotropic GPR models. These results are those of the smallest GPR models.
Qualitatively equivalent trends are expected for larger models.

Fig. 6 Effect of the validation set size on the training cost (A) and (B) and performance (C) and (D) of DL models of BZ, ETL, FAD, and FPL training using
1000 (A), (C) and (D) and 8000 (B), (E) and (F) geometries.
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the size of the training set. Notice that the smallest DL model is
more affected than the largest DL model, with overhead factors
of up to 4.3 and 1.4, respectively. The fact that the validation-
induced overhead decreases with the training-validation split
encourages, when affordable, the selection of larger validation
sets dealing with large training sets. Additionally, because
larger validation sets are more representative of the data being
machine-learned, they tend to produce models that do not
overfit them and generalize better on the test set.58 We note
in passing that model overfitting is a general problem in
machine learning diagnosed when a model overestimates its
generalization capability, thus performing poorly on the test
set. Although more pronounced in artificial neural networks
due to a large number of parameters,38,59,60 it also affects GPs.61

Finally, although offering non-negligible speed-up (espe-
cially on small training sets), validation sets containing less
than 100 geometries seem inappropriate as far as the general-
ization aptitude of the final model is concerned. However, we
must emphasize that the optimal size of a fixed validation set is
problem-dependent and is likely to change with the test set
size, the complexity of the conformational space, and the
chosen data sampling technique. Talking of the latter, it is to
be anticipated that enhanced sampling techniques such as
adaptive sampling62 could help reduce the size of an optimal
validation set by selecting the most informative geometries
from the initial sample pool. Unfortunately, applying such
techniques often comes at the price of higher computational
cost, which needs to be examined carefully to appreciate the
significance of their improvement as compared to random
selection.

4.2. Performance of TL models

4.2.1. Transfer learning of hyperparameters does work. In
this section, we demonstrate the effectiveness of the transfer
learning of hyperparameters. For this purpose, we compare
three single-source FS-TL models TL0.00

0.01, TL0.00
0.10 and TL0.00

0.25 with
two types of baseline models. In the notation TLz

Z, the control
parameter Z represents the knowledge compression coefficient
while z is the relaxation weight. The first baselines were built
using 1% (DL1%), 10% (DL10%) and 25% (DL25%) of the largest
training set, corresponding to 80, 800, and 2000 geometries,
respectively. These local GPR models were trained on the same
number of geometries as the source domains of the FS-TL
models. The second type of baseline DL models were built
using the best solution among 500 randomly generated candi-
date solutions. These models were initialized on 8000 training
geometries but the hyperparameters were not optimized. We
will use the acronym RBL to refer to these random baseline
models.

Fig. 7 and Table 1 respectively report the predictive MAEs
and training costs of the baseline and FS-TL models. The raw
predictive MAEs and acceleration factors are collected in Tables
S3 and S4 (ESI†). It turns out that FS-TL models always outper-
form their local GP analogs when it comes to reconstructing
both the molecular IQA energies and charges. Fig. 7 and Table
S4 (ESI†) suggest that the predictive MAEs of TL0.00

0.01 models can

be an order of magnitude lower than those of DL1% ones, with
the highest deviation factors of B19 recorded for BZ. However,
as one extends the size of the local GPs, their performance
converges toward that of equivalent FS-TL models, whose
enhanced performance is due to the explicit awareness of the
target domain.

As expected, the predictive capability of FS-TL models
improves as the source domain becomes more and more
similar to the target domain. For instance, FS-TL0.01, FS-
TL0.10, and FS-TL0.25 EIQA models of BZ (FPL) recovered 53.7%
(32.8%), 62.1% (51.9%) and 97.7% (98.2%) of the predictive
accuracy of the largest DL model, while respectively achieving
speedup factors of 109.4 (109.2), 39.0 (35.5), and 13.7 (13.3).
However, we note that seeding FS-TL hyperparameters on a
small and non-representative source dataset leads to subopti-
mal performance. In such cases, the guess hyperparameters are
of poor quality and must be refined via relaxation on the target
domain. More specifically, FS-TL models seeded on less than
10% of the target training set tend to perform significantly
worse than the largest DL models, even though doing better

Fig. 7 Predictive MAEs of EIQA and Q00 baseline and FS-TL models of BZ,
ETL, FAD, and FPL. We only examine the reconstruction of molecular
quantities to obtain an overall appreciation of the quality of atomic GPR
models. The models TL0.00

0.01 , TL0.00
0.10 , and TL0.00

0.25 are respectively labeled as
FS-TL0.01, FS-TL0.10, and FS-TL0.25.

Table 1 Training timings of the baseline and FS-TL models of BZ, ETL,
FAD, and FPL. All timings are expressed in hours and correspond to the
shortest CPU/core and wall time recorded for a set of models trained on
the same dataset. For comparison purposes, we also indicate the training
time of the largest DL model

Model

CPU time per core Wall time

BZ ETL FAD FPL BZ ETL FAD FPL

DL 5.751 4.990 6.033 6.498 6.675 5.508 6.488 7.101
DL1% 0.011 0.007 0.009 0.009 0.013 0.009 0.010 0.012
DL10% 0.155 0.117 0.144 0.168 0.187 0.141 0.170 0.202
DL25% 0.516 0.409 0.455 0.559 0.598 0.467 0.521 0.635
TL0.00

0.01 0.041 0.032 0.039 0.042 0.061 0.047 0.056 0.065
TL0.00

0.10 0.144 0.130 0.129 0.162 0.171 0.158 0.155 0.200
TL0.00

0.25 0.433 0.369 0.428 0.468 0.489 0.433 0.486 0.533
RBL 0.295 0.288 0.332 0.336 0.328 0.318 0.365 0.369
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than the local GP baselines. In terms of building cost, FS-TL0.10

and DL10% models exhibit comparable CPU and wall times,
which corroborates the fact that the training of FS-TL
models does not involve any expensive relaxation of the guess
solution.

On the other hand, we find that the performance of RBL
models is always lower than that of TL0.00

0.25 models, while their
building cost lies in between those of TL0.00

0.10 and TL0.00
0.25 models.

Most importantly, despite consuming two to three times fewer
CPU hours than the RBL models, TL0.00

0.10 models perform much
better. Additionally, unlike FS-TL models, the quality of RBL
models might fluctuate considerably due to the unpredictable
nature of random candidate solutions. It also stands to reason
to think that the overall quality of such random solutions will
generally deteriorate with the size of the molecule (Bdimen-
sion of the hyperparameter space) and the complexity of the
conformational space. This intuitive, yet justifiable hypothesis
disqualifies RBL models as a viable option for the fast con-
struction of anisotropic GPR models.

The above findings suggest that a unique FS-TL model
always performs better than any single local GP built on the
same subspace of the target dataset as the source model of the
FS-TL model. Similarly, FS-TL models, which are aware of the
target domain, are expected to perform better than any approx-
imative sparse GP model whose inducing points are the same
as the source dataset (geometries) of the FS-TL model. However,
we anticipate cohorts of local GPs16 trained on smartly clus-
tered subsets of a target dataset to demonstrate enhanced
performance, comparable to relaxed TL and full DL models.

4.2.2. DL-versus-TL models: performance comparison. We
have shown how the transfer of hyperparameters is a viable
option for the efficient construction of GPR models. However,
we also noticed that when the source model is very small, this
practice can lead to sub-optimal models, unless the guess
solution is subjected to relaxation. In this section, we examine
the effect of source model size and relaxation weight on the
training cost and performance of TL models.

Fig. 8 reports the performance of the largest DL and a series
of shortly relaxed TL models trained on 8000 geometries using
a validation set of 500 geometries. The relaxation weight was
kept small (o0.10) to achieve a significant speed-up. Table 2
gives the training timings in terms of CPU time per core and
wall time. Tables S5 and S6 (ESI†) respectively collect the raw
predictive MAEs and speedup factors of the relaxed TL models.

Two main observations come out of Fig. 8. First, it can be
seen that, for a given relaxation weight, the performance of TL
models increases with the size of the source model. Most
importantly, TL models trained on 25% of the target dataset
and a relaxation weight of 0.10 (20 relaxation iterations) out-
perform the equivalent DL models. For instance, TL0.10

0.25 models
of ETL achieve MAEs of 0.91 kJ mol�1 and 1.8 me against 0.98
kJ mol�1 and 1.9 me for the largest DL model. Second, we
observe that TLz

0.01 and TLz
0.10 (z a 0) models achieve much

better predictive accuracy when compared to FS-TL0.01 and FS-
TL0.10 models. This observation confirms the relevance of guess
relaxation on small source models.

Table 2 and Table S6 (ESI†) suggest that relaxed TL models
can be built five to eight times faster than their DL analogs
while preserving the quality of the latter or even outperforming
them. It is important to mention that, as long as the size of the
source model is large enough, FS-TL models already offer a
reasonable cost/accuracy trade-off when it comes to reprodu-
cing molecular IQA energies. Indeed, FS-TL0.25 EIQA models are
capable of recovering 98% of the largest DL model’s perfor-
mance. However, unlike IQA energies, FS-TL models struggle
more when it comes to reconstructing the molecular charge.
Even with a source dataset of 2000 geometries, FS-TL0.25 Q00

models of ETL, FAD, and FPL respectively recovered 86.7%,
71.6%, and 87.2% of the DL model’s performance (less than
90%). Fig. 8 and Table S6 (ESI†) indicate that a short relaxation
of the previous FS-TL0.25 Q00 guess solutions (for only 10
iterations; z = 0.05) leads to excellent accuracy recovery rates
of 94.3%, 101.9%, and 92.3%.

4.3. Prediction of vibrational normal modes

The largest DL and best-performing single-source TL models
(TL0.10

0.25) were employed to compute the harmonic normal
modes and frequencies of BZ, ETL, FAD, and FPL in their

Fig. 8 Predictive MAEs of EIQA and Q00 relaxed TL models of BZ, ETL,
FAD, and FPL. Also indicated is the performance of the DL reference. We
focus on the reconstruction of molecular quantities to obtain an overall
appreciation of the quality of atomic GPR models.

Table 2 Training timings of the largest DL and (relaxed) TL models of BZ,
ETL, FAD, and FPL. All timings are expressed in hours and correspond to
the shortest CPU/core and wall time recorded for a set of equivalent EIQA

and Q00 models trained on the same dataset

Model

CPU time per core Wall time

BZ ETL FAD FPL BZ ETL FAD FPL

DL 5.751 4.990 6.033 6.498 6.675 5.508 6.488 7.101
TL0.05

0.01 0.340 0.217 0.295 0.358 0.398 0.248 0.330 0.414
TL0.05

0.10 0.420 0.309 0.366 0.445 0.474 0.351 0.399 0.509
TL0.05

0.25 0.728 0.597 0.715 0.773 0.839 0.676 0.785 0.895
TL0.10

0.01 0.667 0.446 0.498 0.668 0.773 0.507 0.554 0.777
TL0.10

0.10 0.679 0.587 0.629 0.674 0.767 0.649 0.687 0.747
TL0.10

0.25 1.077 0.821 0.951 1.121 1.252 0.916 1.070 1.242
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respective ground states. The predicted frequencies were com-
pared with reference values calculated using GAUSSIAN1647 at
the appropriate levels of theory (see Section 3.2). Fig. 9 shows
scatter plots of the reference frequencies as functions of the
predicted ones. The predictive MAEs are collected in Table 3
along with the ID (number) of the worst predicted normal mode
and the maximum absolute frequency deviation. Individual
vibrational frequencies are collected in Section 9 of the ESI†
(Tables S7–S10).

As per Table 3, both the DL and TL models achieve decent
frequency predictions as compared to the reference levels of
theory. In all cases, TL models achieve similar to slightly better
average predictions as compared to their DL analogs. The fact
that the MAEs of FFLUX-predicted frequencies lie within
100 cm�1 (1.2 kJ mol�1) of the reference data advocates for
the outstanding quality of both series of models. This conclu-
sion corroborates the excellent Pearson’s R2 correlation coeffi-
cients between the reference and FFLUX-predicted frequencies.

In general, DL and TL models struggle more with higher
frequency modes occurring in the frequency region 43000 cm�1.
For instance, the worst predicted normal modes of BZ are
related to the ring-breathing mode that appears around
3191.96 cm�1 at the B3LYP/aug-cc-pVTZ level. The only

exception to this pattern is ETL for which the worst predicted
mode is the lowest frequency normal mode (263.3 cm�1 at the
B3LYP/aug-cc-pVTZ level of theory). This unexpected observa-
tion can be attributed to a poor sampling along the directions
of this normal mode. Interestingly, this observation offers an
opportunity to improve the quality of the original DL and TL
models via data augmentation with carefully sampled geome-
tries along specific eigenvectors of the mass-weighted Hessian
matrix.

4.4. Geometry optimisation

Both DL and TL models were employed in ‘‘Zero Kelvin’’ FFLUX
simulations for geometrical optimization. Table 4 collects the
average energy difference and root mean square deviation
between the GAUSSIAN and FFLUX-optimised geometries.
Fig. 10 shows overlayed geometries of the optimized molecules.
We also compare in Table S12 (ESI†) the electronic energy range
within the starting pool of geometries and the training
geometries.

As expected, TL models outperform or at least compete with
their DL analogs in terms of energetics and minimum structure
prediction. Most importantly, we find that, despite being some-
times launched from geometries located outside the training

Fig. 9 Prediction of vibrational normal modes using DL and TL models of BZ, ETL, FAD, and FPL. The top panel shows scatter plots of reference-vs.-
predicted frequencies, while the bottom panel shows the highest frequency normal modes. The blue, red, and green numbers are respectively the
reference (exact), DL, and TL predicted frequencies. The collective movements of each mode are also depicted.

Table 3 Performance (MAE and RMSE in parentheses) of DL and TL models in predicting the vibrational frequencies of BZ, ETL, FAD, and FPL. The
acronym WPM denotes the worst predicted normal mode ID, while Dnmax stands for the maximum absolute frequency deviation. All frequencies are
expressed in cm�1. These values can be expressed in energy units using a conversion factor of 0.012 kJ mol�1 for each cm�1. The quantity R2 is the
Pearson’s correlation coefficient between the reference and predicted frequencies

Model MAE(RMSE)DL MAE(RMSE)TL WPMDL WPMTL Dvmax,DL Dvmax,TL RDL
2 RTL

2

BZ 15.21(20.01) 16.18(20.81) 30 30 49.26 54.25 1.00 1.00
ETL 23.25(30.14) 19.02(21.52) 1 1 76.67 63.21 0.99 0.99
FAD 15.05(20.13) 11.92(16.17) 23 23 54.91 42.65 1.00 1.00
FPL 23.99(31.15) 20.57(28.27) 25 29 92.49 75.24 0.99 0.99
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space, all FFLUX optimization runs using both the DL and TL
models outstandingly converged toward the nearest vicinity
of the reference minimum structure (DE o 1 kJ mol�1 and
RMSD o 0.1 Å). Table S12 (ESI†) indicates that, in all cases, the
pool of starting geometries covered a large energy range an
order of magnitude bigger than the training set. This finding
demonstrates, at least partly, the extrapolation capability of our
GPR models.

5. Conclusion

The exorbitant training cost of GPs is the main bottleneck that
prevents or discourages their application on large datasets.
Several solutions have been proposed to address this issue,
including reduced-rank approximations and the usage of itera-
tive solvers. However, most of these schemes do not always
preserve the desired and outstanding predictive capability of
exact (full) GP inference.

In this study, we have proposed a transfer learning (TL)
protocol that mitigates the training cost of anisotropic GPR
models, while not sacrificing accuracy. The protocol works by
transferring hyperparameters from one (or several) small
source models to the target GPR model. Performance compar-
isons between direct learning (DL) and TL models prove that
the latter can be trained several times faster while preserving
the desired predictive capability of the former. More specifi-
cally, TL models trained on 25% of the target training set, and
relaxed for 5% to 10% of the total number of iterations, can be
built 5 to 8 times faster than their DL analogs, while always
recovering more than 90% of the predictive capability of the

latter or even outperforming them. We have also shown that,
in the case of EIQA models, FS-TL0.25 models can already
recover up to 98% of the DL’s performance for an order of
magnitude speed-up (B13). However, failing to relax the guess
solution (hyperparameters) can result in suboptimal models
when the source training set is small and very dissimilar to the
target one.

Most importantly, when deployed in FFLUX simulations, TL
models of atomic IQA energies and charges exhibit similar to
better performance than their DL analogs. TL models behave
better than DL models when it comes to guiding geometry
optimization and normal mode calculations. Although the TL
protocol requires the covariance matrix to fit in memory, it can
be praised for being simple and intuitive, let alone that the
underlying ideas can be easily coupled with existing GP scaling
techniques that mitigate the huge memory requirement of full
GPR model training. Work is already underway in our group to
accomplish this.
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and A. P. Bartók, J. Chem. Phys., 2023, 159, 174108.

27 A. Becke, The quantum theory of atoms in molecules: from
solid state to DNA and drug design, John Wiley & Sons, 2007.

28 M. Blanco, A. Martı́n Pendás and E. Francisco, J. Chem.
Theory Comput., 2005, 1, 1096–1109.

29 J. M. Guevara-Vela, E. Francisco, T. Rocha-Rinza and
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